Вопрос задан 19.09.2018 в 12:47. Предмет Математика. Спрашивает Зарубин Никита.

Зх во второй степени +12=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Халиков Артём.
3xв квадрате + 12=0 3х в квадрате=-12 х в квадрате = -12/3 х в квадрате = -4 х=2 х=-2
0 0
Отвечает Тян Вероника.
3х^2+12=0
3х^2=-12
х^2=-4
ответ: нет решений
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения второй степени, мы можем использовать квадратное уравнение вида ax^2 + bx + c = 0, где a, b и c - коэффициенты уравнения.

В данном случае, у нас имеется уравнение вида z^2 + 12 = 0. Здесь a = 1, b = 0 и c = 12.

Чтобы найти решение этого уравнения, мы можем использовать формулу дискриминанта:

Дискриминант (D) = b^2 - 4ac

Подставляя значения коэффициентов, получим:

D = 0^2 - 4 * 1 * 12 = -48

Значение дискриминанта отрицательное, что означает, что у уравнения нет действительных корней. Вместо этого, у уравнения могут быть комплексные корни.

Для нахождения комплексных корней, мы можем использовать формулу квадратного корня:

x = (-b ± √D) / 2a

Здесь ± означает, что у нас есть два корня, один с плюсом и один с минусом.

Подставляя значения коэффициентов и дискриминанта, получим:

x = (-0 ± √(-48)) / (2 * 1)

Теперь мы должны вычислить корень из -48. Обратите внимание, что √(-48) = √(48) * i, где i - мнимая единица (i^2 = -1). Таким образом, корни будут иметь вид:

x1 = (-0 + √(48) * i) / 2 = √(48) * i / 2 = (√(16) * √(3) * i) / 2 = (4 * √(3) * i) / 2 = 2√(3) * i x2 = (-0 - √(48) * i) / 2 = -√(48) * i / 2 = (-4 * √(3) * i) / 2 = -2√(3) * i

Таким образом, решение уравнения z^2 + 12 = 0 в комплексных числах будет иметь вид:

z1 = 2√(3) * i z2 = -2√(3) * i

Надеюсь, это помогло! Если у вас есть еще вопросы, пожалуйста, дайте мне знать.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос