Вопрос задан 06.09.2018 в 19:04. Предмет Математика. Спрашивает Медведева Валерия.

За 30 дней Петя и вова строят 61 домов. Если Петя повысит свою производительность на 20 %, то за 30

дней совместной работы они построят 66 домов. Сколько домов построят они за 30 дней совместной работы , если Петя еще раз повысит свою производительность на 20 %.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Платонова Ульяна.

Пишу просто извени сил нет.

30 дней-61 дом

20%-? домов,66домов.

40 % к первонач производ. Пети-? домов вместе

1)66-61=5 (домов)-20%

2)5+5=10(домов)-40%

3)61+10=71(дом)

Ответ:71 дом построят Петя и Вова за 30 дней.

 

Удачи в учёбе!!!!!

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that Petya and Vova build 61 houses in 30 days. If Petya increases his productivity by 20%, they will build 66 houses in 30 days. We need to determine how many houses they will build in 30 days if Petya increases his productivity by an additional 20%.

Solution

Let's assume Petya's initial productivity is represented by x houses per day.

According to the given information, Petya and Vova build 61 houses in 30 days, so their combined productivity is 61/30 = 2.033 houses per day.

If Petya increases his productivity by 20%, his new productivity will be 1.2x houses per day.

According to the given information, if Petya increases his productivity by 20%, they will build 66 houses in 30 days, so their combined productivity will be 66/30 = 2.2 houses per day.

We can set up the following equation to solve for x:

x + Vova's productivity = 2.033 houses per day (Equation 1)

And the following equation to solve for the new combined productivity:

1.2x + Vova's productivity = 2.2 houses per day (Equation 2)

By solving these two equations simultaneously, we can find the values of x and Vova's productivity.

Detailed Solution

Let's solve the equations:

x + Vova's productivity = 2.033 houses per day (Equation 1)

1.2x + Vova's productivity = 2.2 houses per day (Equation 2)

Subtracting Equation 1 from Equation 2, we get:

1.2x - x = 2.2 - 2.033

Simplifying, we have:

0.2x = 0.167

Dividing both sides by 0.2, we get:

x = 0.835

So, Petya's initial productivity is 0.835 houses per day.

Now, we need to find the new combined productivity when Petya increases his productivity by an additional 20%.

Petya's new productivity will be 1.2 * 0.835 = 1.002 houses per day.

Therefore, the new combined productivity will be 1.002 + Vova's productivity = 2.2 houses per day.

Subtracting Petya's new productivity from the combined productivity, we get:

Vova's productivity = 2.2 - 1.002

Simplifying, we have:

Vova's productivity = 1.198 houses per day.

Now, we can calculate the number of houses they will build in 30 days with Petya's increased productivity:

Number of houses = (Petya's productivity + Vova's productivity) * 30

Substituting the values, we get:

Number of houses = (1.002 + 1.198) * 30

Simplifying, we have:

Number of houses = 2.2 * 30

Calculating, we find:

Number of houses = 66 houses

Therefore, Petya and Vova will build 66 houses in 30 days if Petya increases his productivity by an additional 20%.

Answer

Petya and Vova will build 66 houses in 30 days if Petya increases his productivity by an additional 20%.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос