
За 30 дней Петя и вова строят 61 домов. Если Петя повысит свою производительность на 20 %, то за 30
дней совместной работы они построят 66 домов. Сколько домов построят они за 30 дней совместной работы , если Петя еще раз повысит свою производительность на 20 %.

Ответы на вопрос

Пишу просто извени сил нет.
30 дней-61 дом
20%-? домов,66домов.
40 % к первонач производ. Пети-? домов вместе
1)66-61=5 (домов)-20%
2)5+5=10(домов)-40%
3)61+10=71(дом)
Ответ:71 дом построят Петя и Вова за 30 дней.
Удачи в учёбе!!!!!



Problem Analysis
We are given that Petya and Vova build 61 houses in 30 days. If Petya increases his productivity by 20%, they will build 66 houses in 30 days. We need to determine how many houses they will build in 30 days if Petya increases his productivity by an additional 20%.Solution
Let's assume Petya's initial productivity is represented by x houses per day.According to the given information, Petya and Vova build 61 houses in 30 days, so their combined productivity is 61/30 = 2.033 houses per day.
If Petya increases his productivity by 20%, his new productivity will be 1.2x houses per day.
According to the given information, if Petya increases his productivity by 20%, they will build 66 houses in 30 days, so their combined productivity will be 66/30 = 2.2 houses per day.
We can set up the following equation to solve for x:
x + Vova's productivity = 2.033 houses per day (Equation 1)
And the following equation to solve for the new combined productivity:
1.2x + Vova's productivity = 2.2 houses per day (Equation 2)
By solving these two equations simultaneously, we can find the values of x and Vova's productivity.
Detailed Solution
Let's solve the equations:x + Vova's productivity = 2.033 houses per day (Equation 1)
1.2x + Vova's productivity = 2.2 houses per day (Equation 2)
Subtracting Equation 1 from Equation 2, we get:
1.2x - x = 2.2 - 2.033
Simplifying, we have:
0.2x = 0.167
Dividing both sides by 0.2, we get:
x = 0.835
So, Petya's initial productivity is 0.835 houses per day.
Now, we need to find the new combined productivity when Petya increases his productivity by an additional 20%.
Petya's new productivity will be 1.2 * 0.835 = 1.002 houses per day.
Therefore, the new combined productivity will be 1.002 + Vova's productivity = 2.2 houses per day.
Subtracting Petya's new productivity from the combined productivity, we get:
Vova's productivity = 2.2 - 1.002
Simplifying, we have:
Vova's productivity = 1.198 houses per day.
Now, we can calculate the number of houses they will build in 30 days with Petya's increased productivity:
Number of houses = (Petya's productivity + Vova's productivity) * 30
Substituting the values, we get:
Number of houses = (1.002 + 1.198) * 30
Simplifying, we have:
Number of houses = 2.2 * 30
Calculating, we find:
Number of houses = 66 houses
Therefore, Petya and Vova will build 66 houses in 30 days if Petya increases his productivity by an additional 20%.
Answer
Petya and Vova will build 66 houses in 30 days if Petya increases his productivity by an additional 20%.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili