
Растояние между двумя причалами лодка проплывает по течению реки за 2 часа,а против течения - за 3
часа. Собственная скоро лодки равна 8 км/ч. найти расстояние между двумя причалами. найти скоро течения реки

Ответы на вопрос

(8+х)*2=(8-х)*3
16+2х=24-3х
5х=8
х=1,6 (Км/час) - скорость течения реки
(8+1,6) х 2 = 19,2 (км) расстояние между двумя причалами.



Calculation of Distance between Two Docks
To find the distance between two docks, we can use the formula:
Distance = Speed x Time
Let's denote the speed of the boat as B and the speed of the river current as C.
Given that the boat takes 2 hours to travel downstream (with the current) and 3 hours to travel upstream (against the current), and the boat's own speed is 8 km/h, we can set up the following equations:
Equation 1: Distance downstream = (B + C) x 2
Equation 2: Distance upstream = (B - C) x 3
To find the distance between the two docks, we need to solve these equations simultaneously.
Let's solve Equation 1 for the distance downstream:
Distance downstream = (B + C) x 2
Substituting the boat's speed (B = 8 km/h), we get:
Distance downstream = (8 + C) x 2
Similarly, let's solve Equation 2 for the distance upstream:
Distance upstream = (B - C) x 3
Substituting the boat's speed (B = 8 km/h), we get:
Distance upstream = (8 - C) x 3
Since the distance between the two docks is the same whether the boat is traveling upstream or downstream, we can equate the two distances:
(8 + C) x 2 = (8 - C) x 3
Now, let's solve this equation to find the value of C, which represents the speed of the river current.
Solving the Equation
Expanding the equation, we get:
16 + 2C = 24 - 3C
Combining like terms, we have:
5C = 8
Dividing both sides by 5, we find:
C = 8/5 = 1.6 km/h
Therefore, the speed of the river current is 1.6 km/h.
Calculating the Distance between the Two Docks
To find the distance between the two docks, we can substitute the value of C into either Equation 1 or Equation 2. Let's use Equation 1:
Distance downstream = (8 + C) x 2
Substituting C = 1.6 km/h, we get:
Distance downstream = (8 + 1.6) x 2 = 9.6 x 2 = 19.2 km
Therefore, the distance between the two docks is 19.2 km.
Summary
- The speed of the river current is 1.6 km/h. - The distance between the two docks is 19.2 km.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili