Вопрос задан 15.08.2018 в 21:57. Предмет Математика. Спрашивает Крюкова Алина.

Дайди два числа,значение суммы которых равно 20,а значение частного равно 3.проверь себя с помощью

вычисления с калькулятором
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кравчук Дима.
Числа 5 и 15  подходят 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу шаг за шагом.

Пусть первое число будет x, а второе число — y.

Условие гласит, что сумма чисел равна 20:

x + y = 20 (уравнение 1)

Также условие гласит, что частное чисел равно 3:

x / y = 3 (уравнение 2)

Мы можем использовать эти два уравнения для нахождения значений x и y.

Метод 1: Подстановка

Мы можем решить одно из уравнений относительно одной переменной и подставить это значение в другое уравнение.

Давайте решим уравнение 1 относительно x:

x = 20 - y (уравнение 3)

Теперь подставим это значение x в уравнение 2:

(20 - y) / y = 3

Решим это уравнение:

20 - y = 3y

20 = 4y

y = 5

Теперь мы знаем, что y = 5. Мы можем использовать это значение для нахождения x:

x = 20 - y = 20 - 5 = 15

Таким образом, первое число x равно 15, а второе число y равно 5.

Метод 2: Умножение

Второй метод заключается в умножении обоих уравнений на одно и то же число так, чтобы коэффициент перед одной из переменных в обоих уравнениях стал одинаковым. Это поможет упростить решение системы уравнений.

Умножим уравнение 2 на 20:

20 * (x / y) = 20 * 3

Это даст нам:

20x / y = 60 (уравнение 4)

Теперь мы можем умножить уравнение 1 на y:

y * (x + y) = 20y

Это даст нам:

xy + y^2 = 20y (уравнение 5)

Теперь выразим xy из уравнения 4 и подставим его в уравнение 5:

(20y - y^2) + y^2 = 20y

Разрешим эту квадратную уравнение:

20y - y^2 + y^2 = 20y

y^2 = 20y

y^2 - 20y = 0

y(y - 20) = 0

Таким образом, мы имеем два возможных значения для y: y = 0 или y = 20.

Если y = 0, то по уравнению 2 мы получим x = 0 / 3 = 0. Но это не подходит, так как согласно условию сумма чисел должна быть равна 20.

Если y = 20, то по уравнению 2 мы получим x = 20 / 3 = 6.6667. Опять же, это не подходит, так как искомые числа должны быть целыми.

Таким образом, решение этой задачи методом умножения не дает нам целочисленных значений для x и y.

Проверка с помощью калькулятора

Мы можем проверить правильность наших вычислений, подставив найденные значения в исходные уравнения:

Уравнение 1: x + y = 20

Подставим x = 15 и y = 5:

15 + 5 = 20 — верно.

Уравнение 2: x / y = 3

Подставим x = 15 и y = 5:

15 / 5 = 3 — верно.

Таким образом, наше решение подтверждается проверкой с помощью калькулятора.

Итак, два числа, сумма которых равна 20, а частное равно 3, это 15 и 5.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос