Вопрос задан 11.08.2018 в 15:47. Предмет Математика. Спрашивает Подолян Алина.

Найдите площадь фигуры,ограниченной прямой y=1-2x и графиком функции y=x^2-5x-3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лазарева Верча.
Для наглядности и определения точек пересечения линий графиков функций делаем чертёж. Из чертежа видим, что линии графиков пересекаются в точках х=-1 и х=4, значит нижний предел интегрирования а=-1, верхний предел интегрирования b=4. Их также можно найти аналитически, решив уравнение
x²-5x-3=1-2x
x²-5x+2x-3-1=0
x²-3x-4=0
D=(-3)²-4*(-4)=9+16=25
x=(3-5)/2=-1   x=(3+5)/2=4
Из рисунка также видно, что прямая расположена выше параболы, а значит для нахождения площади необходимо в формулу площади
S= \int\limits^b_a {(f(x)-g(x))} \, dx
вместо f(x) подставить (1-2х), а вместо g(x) подставить (x²-5x-3):
S= \int\limits^4_{-1} {((1-2x)-(x^2-5x-3))} \, dx = \int\limits^4_{-1} {(-x^2+3x+4)} \, dx =
=- \frac{x^3}{3}+ \frac{3x^2}{2}+4x|_{-1}^{4}=
=- \frac{4^3}{3}+ \frac{3*4^2}{2}+4*4-(- \frac{(-1)^3}{3}+ \frac{3*(-1)^2}{2}+4*(-1))=
=- \frac{64}{3} +24+16-( \frac{1}{3}+1-4)= - \frac{68}{3} +44=21 \frac{1}{3} ед²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculating the Area of the Bounded Figure

To find the area of the figure bounded by the lines y = 1 - 2x and the graph of the function y = x^2 - 5x - 3, we can use the definite integral of the absolute difference between the two functions over the interval where they intersect.

The points of intersection can be found by setting the two functions equal to each other and solving for x.

Step 1: Finding the Points of Intersection The points of intersection can be found by setting the two functions equal to each other and solving for x.

Step 2: Calculating the Area Once the points of intersection are found, the area can be calculated by taking the definite integral of the absolute difference between the two functions over the interval of intersection.

Let's proceed with finding the points of intersection and calculating the area.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос