
На птицеферму привезли корм ,которого хватило бы уткам на 30 дней,а гусям на 45.Рассчитайте,хватит
ли привезенного корма уткам и гусям на 15 дней. решение в дробях!

Ответы на вопрос

1 :45 =1/45 корма в день нужно гусям
1/30+1/45=3/90+2/90=5/90=1/18
пусть весь корм будет единица, тогда
1:1/18=18 дней
ответ: привезенного корма уткам и гусям на 15 дней хватит. (еще и останется)



Problem Analysis
We are given that the amount of feed brought to the poultry farm is enough to last the ducks for 30 days and the geese for 45 days. We need to determine if the amount of feed brought will be enough for both the ducks and geese for an additional 15 days.Solution
To solve this problem, we need to calculate the amount of feed required by the ducks and geese for 15 days and compare it to the amount of feed brought.Let's assume that the amount of feed required by the ducks for 1 day is represented by the fraction x/30, where x is the total amount of feed brought.
Similarly, the amount of feed required by the geese for 1 day is represented by the fraction x/45.
To find the amount of feed required by the ducks and geese for 15 days, we can multiply the respective fractions by 15.
The amount of feed required by the ducks for 15 days is 15 * (x/30) = 0.5x.
The amount of feed required by the geese for 15 days is 15 * (x/45) = (1/3)x.
To determine if the amount of feed brought will be enough for both the ducks and geese for an additional 15 days, we need to compare the total amount of feed required by the ducks and geese for 15 days to the amount of feed brought.
If the total amount of feed required is less than or equal to the amount of feed brought, then it will be enough for both the ducks and geese for an additional 15 days.
Let's calculate the total amount of feed required:
Total amount of feed required = Amount of feed required by ducks for 15 days + Amount of feed required by geese for 15 days
Total amount of feed required = 0.5x + (1/3)x
Total amount of feed required = (3/6)x + (2/6)x
Total amount of feed required = (5/6)x
Therefore, if (5/6)x <= x, then the amount of feed brought will be enough for both the ducks and geese for an additional 15 days.
Simplifying the inequality, we get:
(5/6)x <= x
Multiplying both sides by 6, we get:
5x <= 6x
Subtracting 5x from both sides, we get:
0 <= x
Since x represents the amount of feed brought, it cannot be negative. Therefore, the inequality is always true.
Hence, the amount of feed brought will be enough for both the ducks and geese for an additional 15 days.
Answer
The amount of feed brought will be enough for both the ducks and geese for an additional 15 days.

Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili