Вопрос задан 08.08.2018 в 18:27. Предмет Математика. Спрашивает Романова Софья.

Помогите умоляю!!! Какие числа являются корнями уравнения соs x =√3:2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нугманова Динара.
cosx= \frac{ \sqrt{3} }{2}\\\\x=бarccos \frac{ \sqrt{3} }{2}+2 \pi n, n\in Z\\\\x=б \pi /6+2 \pi n, n\in Z
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти корни уравнения cos(x) = √3/2, мы должны найти значения x, при которых cos(x) равен √3/2.

Сначала, давайте посмотрим на график функции cos(x) и график функции √3/2. График функции cos(x) - это график косинусной функции, который имеет период 2π и амплитуду 1. График функции √3/2 - это горизонтальная линия на уровне √3/2.

На графике функции cos(x) мы видим, что значения косинуса равны √3/2 при x = π/6 и x = 11π/6 (см. график ниже).

Таким образом, корни уравнения cos(x) = √3/2 равны x = π/6 + 2πn и x = 11π/6 + 2πn, где n - целое число.

График функции cos(x) и √3/2:

``` | 1 +--------------------------------------------------------------------+ | | 0 +-------------+------------------------+-----------------------------+ | | | | | | | | -1.5 +-------------+------------------------+-----------------------------+ | | | | -π/2 π/6 7π/6 13π/6 ```

Надеюсь, это поможет!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос