Вопрос задан 07.08.2018 в 04:55. Предмет Математика. Спрашивает Лепешинская Юля.

Во время перемены в лесной школе на поляне играли белки, зайцы и ежи, всего 10 зверей. Ежей было на

4 меньше, чем белок, и на 3 меньше, чем зайцев. Сколько было ежей? белок? зайцев?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соловьева Гульназ.

Всего - 10 зверей
Ежи....х
Белки ...х+4
Зайцы....х+3
Уравнение:
х+(х+4) + (х+3) = 10
3х +7 = 10
3х = 10 - 7
3х = 3
х = 1 ( количество ежей)

1 + 4 = 5 (количество белок)

1 + 3 = 4 (количество зайцев)
Проверяем:
1+ 5 + 4 = 10 зверей

0 0
Отвечает Улитин Никита.

Задача для 2-го класса. Нужно решить с помощью сложения/вычитания.

 

Составим выражение:

(10 - 3) - (10 - 4) = 1 (Ёж)

 

 1 + 4 = 5 (белок) 

1 + 3 = 4 (зайцев) 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that during a break in the forest school, squirrels, rabbits, and hedgehogs were playing on the meadow. There were a total of 10 animals, and the number of hedgehogs was 4 less than the number of squirrels and 3 less than the number of rabbits. We need to find out how many hedgehogs, squirrels, and rabbits there were.

Solution

Let's assume the number of squirrels is S, the number of rabbits is R, and the number of hedgehogs is H.

From the given information, we can form the following equations: 1. The total number of animals is 10: S + R + H = 10. 2. The number of hedgehogs is 4 less than the number of squirrels: H = S - 4. 3. The number of hedgehogs is 3 less than the number of rabbits: H = R - 3.

We can solve this system of equations to find the values of H, S, and R.

Substituting equation 2 into equation 3, we get: S - 4 = R - 3.

Rearranging this equation, we have: S - R = 1.

Now, we can substitute this equation into equation 1: (S - R) + R + H = 10.

Simplifying this equation, we get: S + H = 10.

Substituting equation 2 into this equation, we have: (S - 4) + H = 10.

Simplifying further, we get: S + H = 14.

Now, we have a system of equations: - S + R + H = 10 - S + H = 14

We can solve this system of equations to find the values of H, S, and R.

Solution Steps

1. Solve the system of equations: - S + R + H = 10 - S + H = 14 2. Substitute the values of H and S into the equation H = S - 4 to find the value of R. 3. Calculate the values of H, S, and R.

Solution

Let's solve the system of equations:

From equation 2: S + H = 14, we can rewrite it as S = 14 - H.

Substituting this value of S into equation 1: (14 - H) + R + H = 10.

Simplifying this equation, we get: R + 14 = 10.

Rearranging this equation, we have: R = 10 - 14.

Simplifying further, we get: R = -4.

Now, we can substitute the values of H and R into equation 2: H = S - 4.

Substituting the value of R into this equation, we get: H = (14 - H) - 4.

Simplifying this equation, we get: H = 10 - H.

Rearranging this equation, we have: 2H = 10.

Simplifying further, we get: H = 5.

Now, we can substitute the value of H into equation 2 to find the value of S: S = 14 - H.

Substituting the value of H into this equation, we get: S = 14 - 5.

Simplifying this equation, we get: S = 9.

Therefore, there were 5 hedgehogs, 9 squirrels, and -4 rabbits. However, since the number of animals cannot be negative, we can conclude that there were no rabbits in this scenario.

Answer

In this scenario, there were 5 hedgehogs, 9 squirrels, and 0 rabbits.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос