
Во время перемены в лесной школе на поляне играли белки, зайцы и ежи, всего 10 зверей. Ежей было на
4 меньше, чем белок, и на 3 меньше, чем зайцев. Сколько было ежей? белок? зайцев?

Ответы на вопрос

Всего - 10 зверей
Ежи....х
Белки ...х+4
Зайцы....х+3
Уравнение:
х+(х+4) + (х+3) = 10
3х +7 = 10
3х = 10 - 7
3х = 3
х = 1 ( количество ежей)
1 + 4 = 5 (количество белок)
1 + 3 = 4 (количество зайцев)
Проверяем:
1+ 5 + 4 = 10 зверей



Задача для 2-го класса. Нужно решить с помощью сложения/вычитания.
Составим выражение:
(10 - 3) - (10 - 4) = 1 (Ёж)
1 + 4 = 5 (белок)
1 + 3 = 4 (зайцев)



Problem Analysis
We are given that during a break in the forest school, squirrels, rabbits, and hedgehogs were playing on the meadow. There were a total of 10 animals, and the number of hedgehogs was 4 less than the number of squirrels and 3 less than the number of rabbits. We need to find out how many hedgehogs, squirrels, and rabbits there were.Solution
Let's assume the number of squirrels is S, the number of rabbits is R, and the number of hedgehogs is H.From the given information, we can form the following equations: 1. The total number of animals is 10: S + R + H = 10. 2. The number of hedgehogs is 4 less than the number of squirrels: H = S - 4. 3. The number of hedgehogs is 3 less than the number of rabbits: H = R - 3.
We can solve this system of equations to find the values of H, S, and R.
Substituting equation 2 into equation 3, we get: S - 4 = R - 3.
Rearranging this equation, we have: S - R = 1.
Now, we can substitute this equation into equation 1: (S - R) + R + H = 10.
Simplifying this equation, we get: S + H = 10.
Substituting equation 2 into this equation, we have: (S - 4) + H = 10.
Simplifying further, we get: S + H = 14.
Now, we have a system of equations: - S + R + H = 10 - S + H = 14
We can solve this system of equations to find the values of H, S, and R.
Solution Steps
1. Solve the system of equations: - S + R + H = 10 - S + H = 14 2. Substitute the values of H and S into the equation H = S - 4 to find the value of R. 3. Calculate the values of H, S, and R.Solution
Let's solve the system of equations:From equation 2: S + H = 14, we can rewrite it as S = 14 - H.
Substituting this value of S into equation 1: (14 - H) + R + H = 10.
Simplifying this equation, we get: R + 14 = 10.
Rearranging this equation, we have: R = 10 - 14.
Simplifying further, we get: R = -4.
Now, we can substitute the values of H and R into equation 2: H = S - 4.
Substituting the value of R into this equation, we get: H = (14 - H) - 4.
Simplifying this equation, we get: H = 10 - H.
Rearranging this equation, we have: 2H = 10.
Simplifying further, we get: H = 5.
Now, we can substitute the value of H into equation 2 to find the value of S: S = 14 - H.
Substituting the value of H into this equation, we get: S = 14 - 5.
Simplifying this equation, we get: S = 9.
Therefore, there were 5 hedgehogs, 9 squirrels, and -4 rabbits. However, since the number of animals cannot be negative, we can conclude that there were no rabbits in this scenario.
Answer
In this scenario, there were 5 hedgehogs, 9 squirrels, and 0 rabbits.

Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili