
Карлсон и Малыш из дома Карлсона направились в гости к другу. Карлсон преодолевает расстояние до
дома друга за 30 мин, а Малыш это же расстояние- 3а 40 мин. Карлсон вышел через 5 мин. после выхода Малыша. Через сколько минут после своего выхода Карлсон догонит Малыша?

Ответы на вопрос

40-30-5=5 через 5 минут карлсон догонит малыша



40-30=10
10-5=5
5:5=1
значи Карлсон догонит Малыша через минуту.



Problem Analysis
We are given that Karlsson and the Little Boy set off to visit a friend. Karlsson covers the distance to the friend's house in 30 minutes, while the Little Boy covers the same distance in 40 minutes. Karlsson leaves 5 minutes after the Little Boy. We need to determine how many minutes after Karlsson's departure he will catch up to the Little Boy.Solution
To solve this problem, we can use the concept of relative speed. The relative speed between Karlsson and the Little Boy is the difference in their speeds, which is the reciprocal of the difference in their times taken to cover the same distance.Let's calculate the relative speed between Karlsson and the Little Boy:
Relative speed = 1 / (1/30 - 1/40)
Simplifying the expression:
Relative speed = 1 / (4/120 - 3/120) = 1 / (1/120) = 120
This means that Karlsson catches up to the Little Boy at a speed of 120 units of distance per unit of time.
Now, we need to determine the time it takes for Karlsson to catch up to the Little Boy. Since Karlsson leaves 5 minutes after the Little Boy, we can consider this as the time difference between their departures.
Let's calculate the time it takes for Karlsson to catch up to the Little Boy:
Time = Distance / Speed = Distance / 120
Since the distance covered by both Karlsson and the Little Boy is the same, we can consider it as a common factor and cancel it out:
Time = 1 / 120
Therefore, it will take Karlsson 1/120 of an hour to catch up to the Little Boy.
To convert this time to minutes, we can multiply it by 60:
Time in minutes = (1/120) * 60 = 0.5 minutes
Therefore, Karlsson will catch up to the Little Boy 0.5 minutes after his own departure.
Answer
Karlsson will catch up to the Little Boy 0.5 minutes after his own departure.

Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili