Вопрос задан 06.08.2018 в 09:36. Предмет Математика. Спрашивает Кузнецова Александра.

В двух инкубаторах одинаковое количество яиц. Когда в первом инкубаторе вылупилось 25 цыплят, а во

втором - 15 цыплят, то в первом инкубаторе яиц осталось в 2 раза меньше, чем во втором. Сколько яиц было в каждом инкубаторе? необходимо решить 2-мя способами . Но второй способ решать не иксом
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макарова Яна.
1) Составим пропорцию 2(х-25)=х-15 тогда 2х-50=х-15 переносим х в одну сторону остальное в другую выходит х=35.
2) Т.к. яиц было одинаково а разница стала между 1 и 2 в (25-15)=10 яиц или 2 раза то и выходи отсюда что в 1 осталось 10 во втором 20 прибавив к любому остатку количество вылупившихся то можно и найти сколько их было изначально.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two incubators with the same number of eggs. When 25 chicks hatch in the first incubator and 15 chicks hatch in the second incubator, there are twice as many eggs left in the second incubator as in the first. We need to determine the number of eggs in each incubator using two different methods.

Method 1: Algebraic Approach

Let's assume the number of eggs in each incubator is represented by variables. Let's call the number of eggs in the first incubator 'x' and the number of eggs in the second incubator 'y'.

According to the given information: - When 25 chicks hatch in the first incubator, the number of eggs left in the first incubator is 'x - 25'. - When 15 chicks hatch in the second incubator, the number of eggs left in the second incubator is 'y - 15'. - The number of eggs left in the first incubator is half of the number of eggs left in the second incubator: 'x - 25 = (y - 15)/2'.

We can solve this equation to find the values of 'x' and 'y'.

Method 2: Trial and Error Approach

Another approach is to use trial and error to find the values of 'x' and 'y' that satisfy the given conditions.

We can start by assuming a value for 'x' and then calculate the corresponding value for 'y'. We can then check if the number of eggs left in the first incubator is half of the number of eggs left in the second incubator. If it is not, we can adjust the value of 'x' and repeat the process until we find the correct values.

Let's use both methods to find the number of eggs in each incubator.

Method 1: Algebraic Approach

Let's solve the equation 'x - 25 = (y - 15)/2' to find the values of 'x' and 'y'.

Subtracting (y - 15)/2 from both sides of the equation, we get: x - (y - 15)/2 = 25

Multiplying both sides of the equation by 2 to eliminate the fraction, we get: 2x - (y - 15) = 50

Expanding the equation, we get: 2x - y + 15 = 50

Rearranging the equation, we get: 2x - y = 50 - 15 2x - y = 35

Now, we have one equation with two variables. We need another equation to solve for 'x' and 'y'.

Unfortunately, the given information does not provide us with another equation. Therefore, we cannot solve for 'x' and 'y' using the algebraic approach alone.

Method 2: Trial and Error Approach

Let's use the trial and error approach to find the number of eggs in each incubator.

We know that when 25 chicks hatch in the first incubator, the number of eggs left in the first incubator is half of the number of eggs left in the second incubator.

Let's assume a value for 'x' (the number of eggs in the first incubator) and calculate the corresponding value for 'y' (the number of eggs in the second incubator).

Assuming 'x = 40', the number of eggs left in the first incubator would be '40 - 25 = 15'.

Since the number of eggs left in the first incubator is half of the number of eggs left in the second incubator, the number of eggs left in the second incubator would be '2 * (40 - 25) = 30'.

However, this does not match the given information that there are twice as many eggs left in the second incubator as in the first. Therefore, 'x = 40' is not the correct value.

Let's try another value for 'x'.

Assuming 'x = 50', the number of eggs left in the first incubator would be '50 - 25 = 25'.

Since the number of eggs left in the first incubator is half of the number of eggs left in the second incubator, the number of eggs left in the second incubator would be '2 * (50 - 25) = 50'.

This matches the given information that there are twice as many eggs left in the second incubator as in the first. Therefore, 'x = 50' is the correct value.

So, there were 50 eggs in the first incubator and 50 eggs in the second incubator.

Summary

Using the algebraic approach, we were unable to find the values of 'x' and 'y' due to the lack of a second equation. However, using the trial and error approach, we found that there were 50 eggs in each incubator.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос