
Перед вами три ларца.В первом ларце лежат две золотые монеты,во втором-две серебрянные,а в
третьем-одна золотоя и одна серебрянная.Вы вибираете наугад один из ларцов,и наугад вытягиваете оттуда одну монету.Она оказывается золотая.Какая вероятность того,что вторая монета тоже будет золотая?

Ответы на вопрос

золотая+золотая
золотая+серебряная
Значит вероятность того, что вторая монета будет золотой равна 0,5






Problem Analysis
In this problem, we are given three boxes. The first box contains two gold coins, the second box contains two silver coins, and the third box contains one gold coin and one silver coin. We randomly choose one box and randomly draw one coin from it. We are told that the drawn coin is gold, and we need to find the probability that the second coin in the box is also gold.Solution
To solve this problem, we can use conditional probability. Let's denote the events as follows: - A: The first coin drawn is gold. - B: The second coin in the box is gold.We need to find the probability of event B given event A, denoted as P(B|A).
Using conditional probability, we have the formula: P(B|A) = P(A and B) / P(A)
To find P(A and B), we need to consider the possible scenarios: 1. We choose the first box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 2/2 = 1, and the probability of the second coin being gold is also 1. 2. We choose the second box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 0/2 = 0, and the probability of the second coin being gold is also 0. 3. We choose the third box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 1/2 = 0.5, and the probability of the second coin being gold is also 0.5.
Therefore, P(A and B) = (1/3) * 1 + (1/3) * 0 + (1/3) * 0.5 = 0.5/3 = 1/6.
To find P(A), we need to consider the possible scenarios: 1. We choose the first box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 2/2 = 1. 2. We choose the second box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 0/2 = 0. 3. We choose the third box: The probability of this event is 1/3. In this case, the probability of drawing a gold coin is 1/2 = 0.5.
Therefore, P(A) = (1/3) * 1 + (1/3) * 0 + (1/3) * 0.5 = 1.5/3 = 1/2.
Now we can calculate P(B|A): P(B|A) = P(A and B) / P(A) = (1/6) / (1/2) = (1/6) * (2/1) = 1/3.
Answer
The probability that the second coin is also gold, given that the first coin drawn is gold, is 1/3.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili