 
1.Неравенство log5(2x-1)<22.Уравнение tg(x-п/4)=корень из 33.Середина отрезка АВ с концами в
точках А(-2;3;5) и В(2;-3;7) принадлежит:оси х, оси у, оси z, площади ху?4.Найдите область значения функции f(x)=3-корень из х5.уравнение 1/8 корень 2^x-1 =4^-1.25Помогите пожалуйста 0
        0
         0
        0
    Ответы на вопрос
 
        2x-1<25 2x-1>0
2x<26 x>0.5
x<13
x∈ (0.5;13)
Ответ: (0,5;13)
2) tg(x-π/4) = √3
x-π/4 = π/3 + πn
x= 7π/12 +πn
Ответ: 7π/12 + πn
4) f(x) =3-√x
√x ≥ 0
-беск. < 3-√x ≤3
Ответ: (-беск.; 3]
5)
x-1 = 1
x=2
3) C (с₁;c₂;c₃) - середина отрезка AB
c₁ = (a₁+b₁) / 2 =(-2+2)/2 = 0
c₂ = (3-3)/2 = 0
c₃ = (2+7)/2 = 6
Ответ: середина отрезка АВ принадлежит оси z
 0
                    0
                     0
                    0
                 
            1. Неравенство log5(2x-1) < 2
To solve the inequality log5(2x-1) < 2, we can rewrite it as an exponential equation. The base of the logarithm is 5, so we can rewrite the inequality as:
5^(log5(2x-1)) < 5^2
Simplifying further:
2x - 1 < 25
Adding 1 to both sides:
2x < 26
Dividing both sides by 2:
x < 13
Therefore, the solution to the inequality log5(2x-1) < 2 is x < 13.
2. Уравнение tg(x-π/4) = √33
To solve the equation tg(x-π/4) = √33, we can take the arctangent of both sides to isolate x:
x - π/4 = arctan(√33)
Adding π/4 to both sides:
x = arctan(√33) + π/4
Therefore, the solution to the equation tg(x-π/4) = √33 is x = arctan(√33) + π/4.
3. Середина отрезка АВ с концами в точках А(-2;3;5) и В(2;-3;7) принадлежит: оси х, оси у, оси z, площади ху?
To determine where the midpoint of the line segment AB, with endpoints A(-2,3,5) and B(2,-3,7), lies, we can calculate the coordinates of the midpoint.
The midpoint of a line segment with endpoints (x1, y1, z1) and (x2, y2, z2) is given by the formula:
Midpoint = ((x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2)
Using the coordinates of points A and B:
Midpoint = ((-2 + 2)/2, (3 + (-3))/2, (5 + 7)/2) = (0, 0, 6/2) = (0, 0, 3)
Therefore, the midpoint of the line segment AB lies on the z-axis.
4. Найдите область значений функции f(x) = 3 - √x
To find the range of the function f(x) = 3 - √x, we need to determine the possible values that f(x) can take.
The square root function (√x) is defined for non-negative real numbers. Therefore, the expression √x is only defined for x ≥ 0.
Since f(x) = 3 - √x, the range of f(x) will be all real numbers less than or equal to 3.
Therefore, the range of the function f(x) = 3 - √x is (-∞, 3].
5. Уравнение 1/8 * √(2^x-1) = 4^(-1.25)
To solve the equation 1/8 * √(2^x-1) = 4^(-1.25), we can start by simplifying the equation.
First, let's simplify the right side of the equation:
4^(-1.25) = 1/4^(1.25) = 1/√4 = 1/2
Now, let's rewrite the equation:
1/8 * √(2^x-1) = 1/2
Multiplying both sides of the equation by 8:
√(2^x-1) = 4
Squaring both sides of the equation:
2^x - 1 = 16
Adding 1 to both sides:
2^x = 17
Taking the logarithm base 2 of both sides:
x = log2(17)
Therefore, the solution to the equation 1/8 * √(2^x-1) = 4^(-1.25) is x = log2(17). I hope this helps! Let me know if you have any further questions.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			