Вопрос задан 18.11.2023 в 05:01. Предмет Математика. Спрашивает Девятова Екатерина.

ДОПОМОЖІТЬ БУДЬ ЛАСКА!!!!! Діагоналі квадрата ABCD перетинаються в точці O. OM - перпендикуляр

проведений до площини квадрата. МА-20 см, АВ 16V2 см. Знайдіть довжину від МО​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рахматуллаев Азиз.

Відповідь:За теоремою Піфагора в прямокутному трикутнику AEM ми можемо знайти довжину ЕМ як:

EM^2 = AE^2 - AM^2 = (a/√2)^2 - 20^2 = a^2/2 - 400

Також за теоремою Піфагора в прямокутному трикутнику ЕОМ ми можемо знайти довжину ОМ як:

OM^2 = EO^2 - EM^2 = a^2 - (a^2/2 - 400) = a^2/2 + 400

Покрокове пояснення:

Для розв'язання цієї задачі потрібно зрозуміти, що треба знайти довжину відрізка MO, який є перпендикулярним до площини квадрата ABCD та проходить через середину сторони АВ.

Позначимо точку середини сторони АВ як Е. Таким чином, ЕО буде діагоналлю квадрата AEOB, і ЕМ буде перпендикуляром до діагоналі ЕО. Позначимо довжину сторони квадрата як а. Тоді довжина сторони АЕ буде а/√2, тому що АЕ - діагональ квадрата АВСD.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі, спочатку визначимо розташування точки O у відношенні до сторін квадрата ABCD.

Оскільки OM є перпендикуляром до площини квадрата, то OM буде розташоване на діагоналі квадрата ABCD. Позначимо довжину діагоналі квадрата ABCD як d.

Для знаходження довжини діагоналі квадрата, ми можемо скористатися теоремою Піфагора. За цією теоремою, сума квадратів довжин сторін прямокутного трикутника дорівнює квадрату гіпотенузи.

У нашому випадку, довжина сторони квадрата АВ дорівнює 16√2 см, тому гіпотенуза дорівнює:

d = AB√2 = 16√2√2 = 16 * 2 = 32 см.

Тепер, ми знаємо, що точка O лежить на діагоналі квадрата ABCD довжиною 32 см.

Далі, нам потрібно знайти довжину від М до О. Оскільки МА = 20 см, то МО буде рівне:

МО = d - МА = 32 - 20 = 12 см.

Отже, довжина від М до О дорівнює 12 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос