Вопрос задан 30.07.2018 в 18:28. Предмет Математика. Спрашивает Селютина Полина.

Номер4: Найти: НОК ( 35;50); НОК (8;12); НОК (18;42);Номер5: Найти значения выражений: 40,8/6,8= ;

7 1/3 :1 2/9 - 0,8/ 1,8 * 7/9 + 1,2=Номер6: Найти значения выражений: -8,6*4,3-14*(-1,6)+(-4,3)*(-8)= (-3,9*2,8+26,6):(-3,2)-5,1=Номер7: Найти значения выражений: 22,8/5,7= 4,8-5 2/5:1 4/5/ 2,4*7/8*1,5=
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матвеева Ника.

номер 4: НОК (35;50)=350    НОК (8;12)=24  НОК (18;42)=126

номер 5 40,8/6,8=6  

7 1/3 :1 2/9 - 0,8/ 1,8 * 7/9 + 1,2=639/36-0,4*0,7+1,2=17.75-0,28+1,2=18,67 округляем 18,7

номер6:  -8,6*4,3-14*(-1,6)+(-4,3)*(-8)=-36,98+22,4+34,4=19,82 округляем 20

                 (-3,9*2,8+26,6):(-3,2)-5,1=(-10,92+26,6):(-8,3)=15,68:(-8,3)=1,89

Номер7: 22,8/5,7=4

 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

НОК (35,50)

To find the least common multiple (LCM) of two numbers, we can use the formula:

LCM(a,b) = (a * b) / GCD(a,b)

where GCD(a,b) represents the greatest common divisor of a and b.

Let's apply this formula to find the LCM of 35 and 50:

First, we need to find the GCD of 35 and 50. The GCD can be found using various methods such as the Euclidean algorithm or prime factorization. In this case, we can use the Euclidean algorithm.

Step 1: Divide 50 by 35. The quotient is 1 and the remainder is 15. Step 2: Divide 35 by 15. The quotient is 2 and the remainder is 5. Step 3: Divide 15 by 5. The quotient is 3 and the remainder is 0.

Since the remainder is 0, we stop here. The GCD of 35 and 50 is 5.

Now, we can calculate the LCM using the formula:

LCM(35,50) = (35 * 50) / GCD(35,50) = (35 * 50) / 5 = 350

Therefore, the least common multiple (LCM) of 35 and 50 is 350.

НОК (8,12)

To find the LCM of 8 and 12, we can use the same formula:

LCM(a,b) = (a * b) / GCD(a,b)

Let's find the GCD of 8 and 12 using the Euclidean algorithm:

Step 1: Divide 12 by 8. The quotient is 1 and the remainder is 4. Step 2: Divide 8 by 4. The quotient is 2 and the remainder is 0.

The GCD of 8 and 12 is 4.

Now, we can calculate the LCM:

LCM(8,12) = (8 * 12) / GCD(8,12) = (8 * 12) / 4 = 24

Therefore, the least common multiple (LCM) of 8 and 12 is 24.

НОК (18,42)

Again, we can use the formula:

LCM(a,b) = (a * b) / GCD(a,b)

Let's find the GCD of 18 and 42 using the Euclidean algorithm:

Step 1: Divide 42 by 18. The quotient is 2 and the remainder is 6. Step 2: Divide 18 by 6. The quotient is 3 and the remainder is 0.

The GCD of 18 and 42 is 6.

Now, we can calculate the LCM:

LCM(18,42) = (18 * 42) / GCD(18,42) = (18 * 42) / 6 = 126

Therefore, the least common multiple (LCM) of 18 and 42 is 126.

Значения выражений

# 40,8 / 6,8

To calculate the value of this expression, we simply divide 40.8 by 6.8:

40.8 / 6.8 = 6

Therefore, the value of the expression 40.8 / 6.8 is 6.

# 7 1/3 : 1 2/9 - 0,8 / 1,8 * 7/9 + 1,2

To calculate the value of this expression, we need to follow the order of operations (PEMDAS/BODMAS):

Step 1: Perform the division and multiplication from left to right: - 7 1/3 : 1 2/9 = 22/3 : 11/9 = (22/3) * (9/11) = 66/11 = 6 - 0.8 / 1.8 = 4/9 - 4/9 * 7/9 = 28/81

Step 2: Perform the subtraction and addition from left to right: - 6 - (28/81) + 1.2 = 6 - (28/81) + 1.2 = (486/81) - (28/81) + (972/81) = (486 - 28 + 972) / 81 = 1430 / 81 = 17.6543...

Therefore, the value of the expression 7 1/3 : 1 2/9 - 0,8 / 1,8 * 7/9 + 1,2 is approximately 17.6543.

# -8,6 * 4,3 - 14 * (-1,6) + (-4,3) * (-8)

To calculate the value of this expression, we simply perform the multiplication and addition/subtraction:

- (-8.6) * 4.3 = -36.98 - 14 * (-1.6) = -22.4 - (-4.3) * (-8) = 34.4

Now, we can add the results:

- (-36.98) - (-22.4) + 34.4 = -36.98 + 22.4 + 34.4 = 20.82

Therefore, the value of the expression -8,6 * 4,3 - 14 * (-1,6) + (-4,3) * (-8) is 20.82.

# (-3,9 * 2,8 + 26,6) / (-3,2) - 5,1

To calculate the value of this expression, we follow the order of operations:

Step 1: Perform the multiplication and addition: - (-3.9) * 2.8 + 26.6 = -10.92 + 26.6 = 15.68

Step 2: Perform the division: - 15.68 / (-3.2) = -4.9

Step 3: Perform the subtraction: - (-4.9) - 5.1 = -10

Therefore, the value of the expression (-3,9 * 2,8 + 26,6) / (-3,2) - 5,1 is -10.

# 22,8 / 5,7 = 4,8 - 5 + 2/5 : 1 + 4/5 / 2,4 * 7/8 * 1,5

To calculate the value of this expression, we follow the order of operations:

Step 1: Perform the division: - 22.8 / 5.7 = 4

Step 2: Perform the addition and subtraction: - 4.8 - 5 + 2/5 = -0.2

Step 3: Perform the division and multiplication: - 1 / 1 + 4/5 / 2.4 * 7/8 * 1.5 = 1 + 0.4666666666666667 * 0.875 * 1.5 = 1.1395833333333334

Therefore, the value of the expression 22,8 / 5,7 = 4,8 - 5 + 2/5 : 1 + 4/5 / 2,4 * 7/8 * 1,5 is approximately 1.1396.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос