
356. Бiрлiк кесiндi ретiнде дәптердің 1 торкөзiнiн узындығын алып, координаталық түзу сызындар. •
Координаталык түзудің көмегімен өрнектің мәнін табудың суретів салындар. С Сурет бойынша өрнектің мәнін табыңдар: 1) 5-9+3; 2) -6+11-8; 3) -4+10-14; 4) 3-8+12; 5) 4-10+14; 6) -3+8-12; 7) -2-5+12; 8) -1-4+13; 9) -1-7+11; 10) -5+9-11; 11)-4-5+10; 12) 6-11+8. Сызып корсетсей опшым❤️❤️❤️❤️❤️❤️❤️❤️❤️❤❤❤❤❤❤❤❤❤❤❤❤❤100 балл берем по братский

Ответы на вопрос

сделал:
20 символов. А





Finding the Length of the First Vector
To find the length of the first vector, we can use the formula for the distance between two points in a three-dimensional coordinate system. The formula is:distance = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)
In this case, the coordinates of the first point are (5, -9, 3) and the coordinates of the origin (0, 0, 0) are used as the second point. Plugging in the values, we get:
distance = sqrt((0 - 5)^2 + (0 - (-9))^2 + (0 - 3)^2)
Simplifying the equation, we have:
distance = sqrt((-5)^2 + (9)^2 + (-3)^2)
Calculating the squares and adding them up, we get:
distance = sqrt(25 + 81 + 9)
Finally, taking the square root, we find:
distance = sqrt(115)
Therefore, the length of the first vector is approximately 10.72.
Finding the Length of the Remaining Vectors
Using the same formula, we can find the lengths of the remaining vectors. Here are the calculations:2) Length of the second vector: sqrt((-6)^2 + (11)^2 + (-8)^2) = sqrt(36 + 121 + 64) ≈ 15.13 3) Length of the third vector: sqrt((-4)^2 + (10)^2 + (-14)^2) = sqrt(16 + 100 + 196) ≈ 21.54 4) Length of the fourth vector: sqrt((3)^2 + (-8)^2 + (12)^2) = sqrt(9 + 64 + 144) ≈ 15.97 5) Length of the fifth vector: sqrt((4)^2 + (-10)^2 + (14)^2) = sqrt(16 + 100 + 196) ≈ 21.54 6) Length of the sixth vector: sqrt((-3)^2 + (8)^2 + (-12)^2) = sqrt(9 + 64 + 144) ≈ 15.97 7) Length of the seventh vector: sqrt((-2)^2 + (-5)^2 + (12)^2) = sqrt(4 + 25 + 144) ≈ 14.87 8) Length of the eighth vector: sqrt((-1)^2 + (-4)^2 + (13)^2) = sqrt(1 + 16 + 169) ≈ 13.93 9) Length of the ninth vector: sqrt((-1)^2 + (-7)^2 + (11)^2) = sqrt(1 + 49 + 121) ≈ 13.93 10) Length of the tenth vector: sqrt((-5)^2 + (9)^2 + (-11)^2) = sqrt(25 + 81 + 121) ≈ 15.97 11) Length of the eleventh vector: sqrt((-4)^2 + (-5)^2 + (10)^2) = sqrt(16 + 25 + 100) ≈ 12.81 12) Length of the twelfth vector: sqrt((6)^2 + (-11)^2 + (8)^2) = sqrt(36 + 121 + 64) ≈ 15.13
Please note that the lengths of the vectors are approximate values rounded to two decimal places.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili