Вопрос задан 08.11.2023 в 03:39. Предмет Математика. Спрашивает Ермаков Арсений.

3 The line through (2, -4) and (x, 1) has a slope of -5. Determine the equation of the line and

the value of x.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жулёв Игорь.

To determine the equation of the line through the points (2, -4) and (x, 1) with a slope of -5, you can use the point-slope form of the equation of a line:

y - y_1 = m(x - x_1)

where (x1, y1) is a point on the line, m is the slope, and (x, y) are the coordinates of any other point on the line.

In this case, you have the point (2, -4) and the slope m = -5:

y - (-4) = -5(x - 2)

Now, simplify the equation:

y + 4 = -5(x - 2)

Next, distribute the -5 on the right side:

y + 4 = -5x + 10

Now, isolate y by subtracting 4 from both sides:

y = -5x + 6

So, the equation of the line is y = -5x + 6.

To find the value of x, you can use the fact that the line passes through the point (x, 1). Substitute this point into the equation:

1 = -5x + 6

Now, solve for x:

5x = 6 - 1

5x = 5

x = 1

So, the value of x is 1.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the equation of the line, we need to use the point-slope form of a linear equation, which is:

y - y1 = m(x - x1),

where (x1, y1) is a point on the line, and m is the slope of the line.

Given that the line passes through (2, -4) and (x, 1), and has a slope of -5, we can substitute these values into the point-slope form.

Let's substitute (2, -4) into the equation:

y - (-4) = -5(x - 2).

Simplifying, we have:

y + 4 = -5x + 10.

Next, let's substitute (x, 1) into the equation:

1 + 4 = -5x + 10.

Simplifying, we have:

5 = -5x + 10.

Now, let's solve for x:

-5x = 5.

Dividing both sides by -5, we get:

x = -1.

So, the value of x is -1.

Finally, let's rearrange the equation in slope-intercept form (y = mx + b), where b is the y-intercept:

y + 4 = -5x + 10.

Subtract 4 from both sides:

y = -5x + 6.

Therefore, the equation of the line passing through (2, -4) and (x, 1) with a slope of -5 is y = -5x + 6, and the value of x is -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос