
Сумма трёх чисел равна 192. Найдите эти числа, если третье число из них на 17 больше второго и в 9
раз меньше первого.

Ответы на вопрос




Решение математической задачи:
Давайте обозначим три числа, которые мы ищем, как x, y и z.
У нас есть три условия: 1. Сумма трех чисел равна 192: x + y + z = 192 2. Третье число из них на 17 больше второго: z = y + 17 3. Третье число в 9 раз меньше первого: z = x / 9
Теперь мы можем использовать эти условия, чтобы решить систему уравнений.
Сначала выразим z через y из второго условия: z = y + 17 Теперь выразим z через x из третьего условия: z = x / 9
Теперь у нас есть два уравнения для z, которые мы можем приравнять друг к другу: y + 17 = x / 9
Теперь мы заменим z в первом уравнении суммы трех чисел равной 192 на выражение из второго условия: x + y + (y + 17) = 192 x + 2y + 17 = 192 x + 2y = 192 - 17 x + 2y = 175
Теперь у нас есть система из двух уравнений: y + 17 = x / 9 x + 2y = 175
Решим эту систему уравнений.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili