Вопрос задан 26.07.2018 в 21:45. Предмет Математика. Спрашивает Сажин Антон.

Cos2x + √3cos(п/2-х)+2=0 Ребятки срочно помогите.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Алиса.
Cos2x +√3*cos(π/2 -x) +2 = 0 ;
(1- 2sin²x) +√3sinx +2 =0 ;
2sin²x - √3sinx -3 =0 ;
sinx₁ =(√3+3√3)/4 =√3 > 1   не имеет решения ;
sinx =(√3-3√3)/4 = -√3/2 ;
x = (-1)^(n+1)*π/3 +πn ; n∈Z.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, давайте решим уравнение cos2x + √3cos(π/2 - x) + 2 = 0.

Для удобства, обозначим cos(π/2 - x) как sin(x), таким образом уравнение примет вид:

cos2x + √3sin(x) + 2 = 0.

Теперь мы можем использовать тригонометрические тождества для упрощения уравнения. Например, мы можем заменить cos2x на 1 - 2sin^2(x), что даст нам:

1 - 2sin^2(x) + √3sin(x) + 2 = 0.

Теперь это квадратное уравнение относительно sin(x). Решая его, мы получим два значения sin(x), затем можем найти соответствующие значения x, используя обратные тригонометрические функции.

Надеюсь, это поможет вам решить уравнение. Если у вас возникнут какие-либо вопросы, не стесняйтесь спрашивать.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос