
Проволока длиной 1 метр должна быть поделена на 2 части. Из первой части сделают круг, из второй
квадрат. Какую длину должны иметь первая и вторая часть проволоки, чтобы сумма площадей круга и квадрата была максимальной?

Ответы на вопрос

Периметр фигуры- это и есть длина куска проволоки, взятой для изготовления этой фигуры. Длину для удобства будем выражать в сантиметрах (т.е. длина проволоки будет 100см).
Обозначим периметр круга как x (икс)
Тогда периметр квадрата будет равен оставшемуся куску проволоки, то есть: 100-x
Периметр круга равен два пи, умножить на радиус (
Отсюда, радиус равен:
Площадь круга равна пи умножить на радиус в квадрате:
Периметр квадрата равен четырём его сторонам (
Отсюда, сторона равна:
Площадь квадрата равна:
Теперь, запишем чему равна сумма площадей круга и квадрата:
Как видим, получилось уравнение параболы, у которой ветви направлены вверх (так как коэффициент при икс квадрат- положительный).
Если поразмыслить, то мы поймём, что у такой параболы максимальное значение y для любого отрезка по x будет на одном из концов этого отрезка (на том, который дальше от вершины параболы).
Подтвердим это, построив график функции
Для начала, вычислим несколько значений функции при разных икс:
x y
0 795,8
10 650,8
20 534,3
30 446,2
40 386,5
50 355,2
60 352,3
70 377,9
80 431,8
90 514,2
100 625,0
Затем, по этим точкам построим график (смотри приложенный рисунок).
По графику видно, что максимальное значение суммарной площади получается при x=100 (хотя, это видно и без графика, по вычисленным значениям функции).
Значит, длина первой части проволоки (для изготовления круга) нужна 100 сантиметров (т.е. 1 метр), а длина второй части- для квадрата получится равной: 100-x = 100-100 = 0см.
То есть максимальная площадь получится, если квадрат вообще не делать, а всю проволоку пустить на изготовление круга.




Для решения этой задачи мы можем использовать метод дифференциального исчисления.
Обозначим длину первой части проволоки как x, а длину второй части проволоки как 1 - x (так как общая длина проволоки равна 1 метру). Теперь мы можем выразить площади круга и квадрата через x.
Площадь круга S1 = π*(x/2)^2 Площадь квадрата S2 = (1 - x)^2
Теперь мы можем выразить сумму площадей как функцию от x:
S(x) = π*(x/2)^2 + (1 - x)^2
Для нахождения максимальной суммы площадей мы можем найти производную функции S(x) и приравнять её к нулю:
S'(x) = 0
После нахождения x, мы можем найти длину первой и второй части проволоки, подставив найденное значение x в наши исходные уравнения.
Это позволит нам найти длину проволоки, при которой сумма площадей круга и квадрата будет максимальной.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili