
Функция y=f(x) является нечётной и при x ⩽0 задаётся формулой y= - x² - 8x.Найдите значение фун. в
т. минимума (y min).

Ответы на вопрос

f(x)=-x^2-8x - парабола, ветви которой направлены вниз. y min не существует



Чтобы найти значение функции в точке минимума (y_min), мы должны найти координаты этой точки и подставить их в функцию. Сначала найдем производную функции и приравняем ее к нулю, чтобы найти x-координату точки минимума. Затем мы подставим эту x-координату в функцию, чтобы найти соответствующее значение y.
Исходная функция: y = -x^2 - 8x
Давайте найдем производную этой функции и приравняем ее к нулю, чтобы найти x-координату точки минимума:
y' = -2x - 8
Теперь приравняем производную к нулю и решим уравнение:
-2x - 8 = 0
-2x = 8
x = -4
Теперь у нас есть x-координата точки минимума, которая равна -4. Теперь подставим эту координату обратно в исходную функцию, чтобы найти соответствующее значение y:
y = -(-4)^2 - 8*(-4)
y = -16 + 32
y = 16
Итак, значение функции в точке минимума (y_min) равно 16.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili