Вопрос задан 25.07.2018 в 04:45. Предмет Математика. Спрашивает Кастанова Алина.

Как решить задачу-Жил-был царь. И было у него 3 волшебных сундука, где он хранил золотые монеты для

своих детей. Выросли дети и решил он подарить своим детям эти монеты. Старшему сыну он дал из 1 сундука 1/2 всех монет, среднему – 2/4 всех монет, а младшему – 2/3 всех монет. Затем подарил старшей дочери из 1 сундука 4 монеты, средней дочери из 2 сундука 10 монет, младшей дочери дал всего 2 монеты из 3 сундука. И осталось у царя в 1 сундуке 26 монет, во 2-м сундуке 14 монет, а в 3-м сундуке – 16 монет. Сколько монет было в каждом сундуке первоначально?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шабалина Кристина.
А кто автор учебника?
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим количество монет в каждом сундуке как Х, Y и Z соответственно.

Из условия задачи мы знаем, что: X + Y + Z = 26 (1) X + 4 = Y + 10 = Z + 2 (2)

Теперь давайте решим эту систему уравнений.

Из уравнения (2) мы можем выразить Y и Z через X: Y = X + 4 Z = X - 2

Подставим это в уравнение (1): X + (X + 4) + (X - 2) = 26 3X + 2 = 26 3X = 24 X = 8

Теперь мы знаем, что в первом сундуке было 8 монет.

Используя это значение, мы можем найти количество монет во втором и третьем сундуках: Y = 8 + 4 = 12 Z = 8 - 2 = 6

Таким образом, во втором сундуке было 12 монет, а в третьем - 6 монет.

Итак, первоначально в первом сундуке было 8 монет, во втором - 12 монет, а в третьем - 6 монет.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос