Вопрос задан 24.07.2018 в 23:38. Предмет Математика. Спрашивает Василевич Ангелина.

Решите уравнения 1)5,6/3х+12=0,4/3 2) 8,7/15+4х=0,5/2 3)3х+1,6/2,4=1,2 4)5,4/3=0,9/4,7х-4,2

Заранее спасибо)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Козленко Женя.
1)5,6/3х+12=0,4/3
3х+12=5,6*3:0,4
3х+12=42
3х=42-12
3х=30
х=10
2) 8,7/15+4х=0,5/2
15+4х=8,7*2:0,5
15+4х=34,8
4х=34,8-15
4х=19,8
х=4,95
3)3х+1,6/2,4=1,2 оно точно такое?
4)5,4/3=0,9/4,7х-4,2
4,7х-4,2=0,9*3:5,4
4,7х-4,2=0,5
4,7х=0,5+4,2
4,7х=4,7
х=1
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Equations:

Let's solve the given equations step by step:

1) Equation 1: 5.6/3x + 12 = 0.4/3 + 2

To solve this equation, we'll start by simplifying both sides of the equation: 5.6/3x + 12 = 0.4/3 + 2 5.6/3x + 12 = 0.4/3 + 6/3 5.6/3x + 12 = (0.4 + 6)/3 5.6/3x + 12 = 6.4/3

Now, let's isolate the variable x by subtracting 12 from both sides: 5.6/3x = 6.4/3 - 12 5.6/3x = (6.4 - 12)/3 5.6/3x = -5.6/3

To eliminate the fractions, we can multiply both sides of the equation by the least common multiple (LCM) of the denominators, which is 3: (3 * 5.6/3)x = (3 * -5.6/3) 5.6x = -5.6

Finally, we can solve for x by dividing both sides of the equation by 5.6: x = -5.6/5.6 x = -1

Therefore, the solution to Equation 1 is x = -1.

2) Equation 2: 8.7/15 + 4x = 0.5/2 + 3

To solve this equation, we'll start by simplifying both sides of the equation: 8.7/15 + 4x = 0.5/2 + 3 8.7/15 + 4x = 0.5/2 + 6/2 8.7/15 + 4x = (0.5 + 6)/2 8.7/15 + 4x = 6.5/2

Now, let's isolate the variable x by subtracting 8.7/15 from both sides: 4x = 6.5/2 - 8.7/15

To eliminate the fractions, we can multiply both sides of the equation by the LCM of the denominators, which is 30: (30 * 4x) = (30 * 6.5/2) - (30 * 8.7/15) 120x = 975 - 174

Now, let's simplify the right side of the equation: 120x = 801

Finally, we can solve for x by dividing both sides of the equation by 120: x = 801/120 x = 6.675

Therefore, the solution to Equation 2 is x = 6.675.

3) Equation 3: 3x + 1.6/2.4 = 1.2

To solve this equation, we'll start by simplifying both sides of the equation: 3x + 1.6/2.4 = 1.2 3x + 1.6/2.4 = 1.2 3x + 1.6/2.4 = 1.2

Now, let's isolate the variable x by subtracting 1.6/2.4 from both sides: 3x = 1.2 - 1.6/2.4

To eliminate the fractions, we can multiply both sides of the equation by the LCM of the denominators, which is 2.4: (2.4 * 3x) = (2.4 * 1.2) - 1.6 7.2x = 2.88 - 1.6 7.2x = 1.28

Finally, we can solve for x by dividing both sides of the equation by 7.2: x = 1.28/7.2 x = 0.1778

Therefore, the solution to Equation 3 is x = 0.1778.

4) Equation 4: 5.4/3 = 0.9/4.7x - 4.2

To solve this equation, we'll start by simplifying both sides of the equation: 5.4/3 = 0.9/4.7x - 4.2 5.4/3 = 0.9/4.7x - 4.2

Now, let's isolate the variable x by adding 4.2 to both sides: 5.4/3 + 4.2 = 0.9/4.7x

To eliminate the fractions, we can multiply both sides of the equation by the LCM of the denominators, which is 14.1: (14.1 * 5.4/3) + (14.1 * 4.2) = 0.9x

Now, let's simplify the left side of the equation: 25.2 + 59.22 = 0.9x 84.42 = 0.9x

Finally, we can solve for x by dividing both sides of the equation by 0.9: x = 84.42/0.9 x = 93.8

Therefore, the solution to Equation 4 is x = 93.8.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос