Вопрос задан 24.07.2018 в 02:06. Предмет Математика. Спрашивает Кузьмина Екатерина.

Помогите решить задачу по математике велосипедист за первый час проехал 9 1/3 км ,за второй час на

3/5 км больше, а за третий час на 1 1/2 км меньше, чем за второй час. Верно ли,что за третий час велосипедист проехал не меньше 8 1/2 км .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Штернова Вера.

9 1/3+3/5=9 5/15+9/15=9 14/15км - проехал за 2ч
9 14/15-1 1/2=9 28/30-1 15/30=8 13/30км - проехал за 3ч
8 1/2  >   8 13/30
8 15/30 > 8 13/30
не верно

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу.

Пусть велосипедист проехал x километров за второй час. Тогда за третий час он проехал (x - 3/5 - 1 1/2) километров, так как он проехал на 3/5 км больше, а затем на 1 1/2 км меньше, чем за второй час.

Таким образом, за первый час он проехал 9 1/3 км, за второй час - x км, а за третий час - (x - 3/5 - 1 1/2) км.

Общее расстояние, которое велосипедист проехал за эти три часа, равно сумме расстояний за каждый из часов:

9 1/3 + x + (x - 3/5 - 1 1/2)

Чтобы узнать, верно ли, что за третий час велосипедист проехал не менее 8 1/2 км, мы должны сравнить это значение с 8 1/2 км и проверить условие.

Расчет:

9 1/3 + x + (x - 3/5 - 1 1/2) >= 8 1/2

Приведем все дроби к общему знаменателю и выполним вычисления:

28/3 + x + (5x/5 - 3/5 - 8/2)

28/3 + x + (5x/5 - 3/5 - 20/5)

28/3 + x + (5x - 3 - 20)/5

28/3 + x + (5x - 23)/5

Умножим оба выражения на 15, чтобы избавиться от дробей:

15 * (28/3 + x + (5x - 23)/5) >= 15 * 8 1/2

15 * (28/3) + 15 * x + 15 * (5x - 23)/5 >= 15 * (17/2)

140 + 15x + 3(5x - 23) >= 127.5

140 + 15x + 15x - 69 >= 127.5

30x - 69 + 140 >= 127.5

30x + 71 >= 127.5

30x >= 127.5 - 71

30x >= 56.5

x >= 56.5/30

x >= 1.883

Ответ:

Таким образом, мы получили, что x (расстояние, которое велосипедист проехал за второй час) должно быть не меньше 1.883 км. Значит, за третий час велосипедист проехал не менее 8 1/2 км.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос