Вопрос задан 29.09.2023 в 21:17. Предмет Математика. Спрашивает Романов Паша.

1. Существует ли трёхзначное число, которое равно про-изведению своих цифр? Ответ объясните.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Анциферова Дарья.

Ответ:

Нет

Пошаговое объяснение:

Максимальная возможная сумма цифр трехзначного числа 27. А это меньше чем даже 100

0 0
Отвечает Матющенко Егор.

Ответ:

3*7=21, учитывая, что наше трехзначное число 37Z, 3*7*Z=37Z, даже при Z=9, произведение будет = 189, что не удовлетворяет. Ответ такого трехзначного числа не существует. ИЛИ другое решение. Пусть наше число имеет Х- сотен, Y- десятков, Z- единиц, т.е. его можно записать в следующем виде 100X+10Y+Z и это число по условию должно равняться произведению XYZ

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Да, существует трёхзначное число, которое равно произведению своих цифр. Такое число называется числом Армстронга (или числом Нарцистическим).

Примером такого числа является число 153:

1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153

Как видно, сумма кубов его цифр равна самому числу. Это свойство делает число 153 числом Армстронга.

Другими примерами трёхзначных чисел Армстронга являются 370 и 371:

370 = 3^3 + 7^3 + 0^3 = 27 + 343 + 0 = 370 371 = 3^3 + 7^3 + 1^3 = 27 + 343 + 1 = 371

Такие числа интересны с математической точки зрения и используются в различных задачах и головоломках.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос