Вопрос задан 29.09.2023 в 03:44. Предмет Математика. Спрашивает Долотовский Влад.

Найдите пж нод чисел 123,132,213,231,312,321​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кокорюкина Ирина.

Ответ:3

Пошаговое объяснение:они все на 3 нодируются

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Наибольший общий делитель (НОД) набора чисел можно найти последовательно, используя алгоритм Евклида.

  1. Начнем с первых двух чисел: 123 и 132.

    НОД(123, 132) = 3

  2. Затем найдем НОД(3, 213):

    НОД(3, 213) = 3

  3. Теперь найдем НОД(3, 231):

    НОД(3, 231) = 3

  4. Переходим к НОД(3, 312):

    НОД(3, 312) = 3

  5. И, наконец, НОД(3, 321):

    НОД(3, 321) = 3

Таким образом, наибольший общий делитель всех чисел 123, 132, 213, 231, 312 и 321 равен 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос