Вопрос задан 29.07.2023 в 08:48. Предмет Математика. Спрашивает Нарыжный Никита.

Arcsin0,5+arccos подкорнем 3/2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Быков Артем.
Arcsin1/2=п/5
Arccos(3/2)^(1/2)=п/3
п/5+п/3=(3п+5п)/15=8п/15
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To evaluate the expression, we'll start by finding the values of the individual trigonometric functions and then perform the arithmetic.

  1. Calculate arcsin(0.5): arcsin(0.5) is the angle whose sine is 0.5. It's commonly known that arcsin(0.5) = π/6 radians or 30 degrees.

  2. Calculate arccos(√3/2): arccos(√3/2) is the angle whose cosine is √3/2. This is commonly known as π/6 radians or 30 degrees.

Now, the expression becomes:

arcsin(0.5) + arccos(√3/2) = π/6 + π/6

To combine these two angles, we add them together:

π/6 + π/6 = 2π/6

Simplify the fraction:

2π/6 = π/3

So, the final result is:

arcsin(0.5) + arccos(√3/2) = π/3

In radians, this is approximately 1.0472 radians, and in degrees, it is approximately 60 degrees.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос