
|5-3x|> 1 |x×2|>_ 0 |3x-7|>_ -8


Ответы на вопрос

5-3x>1 и 5-3х<-1
3х<4. 3х>6
х<1⅓. х>2
х€(-∞;1⅓)v(2;+∞)
|x×2|≥0
x€R
(|f(x)|≥0 ∀x€R)
|3x-7|≥-8
x€R
(|f(x)|≥-8 ∀x€R)



To solve the given inequalities, we'll break it down into three separate inequalities and solve each one step by step:
- |5 - 3x| > 1
- |x * 2| ≥ 0 (Note: Any absolute value is always non-negative, so this inequality holds for all real values of x.)
- |3x - 7| ≥ -8 (Note: Any absolute value is always non-negative, so this inequality holds for all real values of x.)
Let's solve the first inequality:
- |5 - 3x| > 1
We'll consider two cases:
Case 1: (5 - 3x) > 1 5 - 3x > 1 -3x > 1 - 5 -3x > -4 Divide by -3 (Note: When dividing by a negative number, the inequality sign flips) x < 4/3
Case 2: -(5 - 3x) > 1 -5 + 3x > 1 3x > 1 + 5 3x > 6 Divide by 3 x > 2
So, the solution to the first inequality is 2 < x < 4/3.
Now, let's move on to the third inequality:
- |3x - 7| ≥ -8
Since any absolute value is non-negative, this inequality holds for all real values of x.
Now, let's consider the second inequality:
- |x * 2| ≥ 0
As mentioned earlier, any absolute value is always non-negative, so this inequality is true for all real values of x.
In summary, the solution to the given system of inequalities is: 2 < x < 4/3
Note: The second and third inequalities are always true for any real value of x, so they don't restrict the solution set. The only constraint comes from the first inequality.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili