 
2sin(квадрат)x-2cos x=2,5
 0
        0
         0
        0
    Ответы на вопрос
 
        Пусть \cos\frac{x}{2}=t\,\,\, (|t| \leq 1)cos2x=t(∣t∣≤1) , получаем
\begin{lgathered}2t^2-5t+2=0\\ D=b^2-4ac=(-5)^2-4\cdot2\cdot2=25-16=9\\ t_1= \frac{5+3}{4} =2\notin[-1;1]\\ t_2= \frac{5-3}{2} = \frac{1}{2}\end{lgathered}2t2−5t+2=0D=b2−4ac=(−5)2−4⋅2⋅2=25−16=9t1=45+3=2∉[−1;1]t2=25−3=21
Обратная замена
\begin{lgathered}\cos\frac{x}{2}=0.5\\ \frac{x}{2}=\pm \frac{\pi}{3} +2 \pi n,n \in \mathbb{Z}\\ x=\pm \frac{2\pi}{3} + 4\pi n,n \in \mathbb{Z}\end{lgathered}cos2x=0.52x=±3π+2πn,n∈Zx=±32π+4πn,n∈Z
утверждение может быть неверным
 0
                    0
                     0
                    0
                 
            It seems there might be some confusion or a typo in the equation you provided. The variable "квадрат" is not a standard mathematical notation, and it's unclear what it represents. If you meant "квадрат" to be the square of something (like "x^2" in English notation), please clarify.
Assuming you meant to write "2sin^2(x) - 2cos(x) = 2.5," we can attempt to solve the equation.
Let's simplify the equation first:
2sin^2(x) - 2cos(x) = 2.5
Now, we can use the trigonometric identity: sin^2(x) + cos^2(x) = 1 Rearrange this identity: sin^2(x) = 1 - cos^2(x)
Substitute sin^2(x) with 1 - cos^2(x) in the original equation:
2(1 - cos^2(x)) - 2cos(x) = 2.5
Now, distribute the 2 on the left side:
2 - 2cos^2(x) - 2cos(x) = 2.5
Rearrange the equation:
-2cos^2(x) - 2cos(x) + 2 = 2.5
Subtract 2.5 from both sides:
-2cos^2(x) - 2cos(x) - 0.5 = 0
Now, we have a quadratic equation in terms of cos(x):
2cos^2(x) + 2cos(x) + 0.5 = 0
To solve for cos(x), we can use the quadratic formula:
cos(x) = (-b ± √(b^2 - 4ac)) / 2a
In this equation, a = 2, b = 2, and c = 0.5.
cos(x) = (-(2) ± √(2^2 - 4 * 2 * 0.5)) / (2 * 2) cos(x) = (-2 ± √(4 - 4)) / 4 cos(x) = (-2 ± √0) / 4
Since the discriminant (the term inside the square root) is zero, there is only one real solution for cos(x):
cos(x) = (-2 + 0) / 4 cos(x) = -0.5
Now, to find sin(x), we can use the trigonometric identity:
sin^2(x) + cos^2(x) = 1
sin^2(x) + (-0.5)^2 = 1 sin^2(x) + 0.25 = 1 sin^2(x) = 1 - 0.25 sin^2(x) = 0.75
sin(x) = ±√0.75 ≈ ±0.866
So, the solutions for x are:
- cos(x) = -0.5 and sin(x) ≈ 0.866
- cos(x) = -0.5 and sin(x) ≈ -0.866
Keep in mind that this solution assumes you meant "2sin^2(x) - 2cos(x) = 2.5" as the original equation. If "квадрат" represents something different, please provide clarification.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			