
2sin(квадрат)x-2cos x=2,5


Ответы на вопрос

Пусть \cos\frac{x}{2}=t\,\,\, (|t| \leq 1)cos2x=t(∣t∣≤1) , получаем
\begin{lgathered}2t^2-5t+2=0\\ D=b^2-4ac=(-5)^2-4\cdot2\cdot2=25-16=9\\ t_1= \frac{5+3}{4} =2\notin[-1;1]\\ t_2= \frac{5-3}{2} = \frac{1}{2}\end{lgathered}2t2−5t+2=0D=b2−4ac=(−5)2−4⋅2⋅2=25−16=9t1=45+3=2∉[−1;1]t2=25−3=21
Обратная замена
\begin{lgathered}\cos\frac{x}{2}=0.5\\ \frac{x}{2}=\pm \frac{\pi}{3} +2 \pi n,n \in \mathbb{Z}\\ x=\pm \frac{2\pi}{3} + 4\pi n,n \in \mathbb{Z}\end{lgathered}cos2x=0.52x=±3π+2πn,n∈Zx=±32π+4πn,n∈Z
утверждение может быть неверным



It seems there might be some confusion or a typo in the equation you provided. The variable "квадрат" is not a standard mathematical notation, and it's unclear what it represents. If you meant "квадрат" to be the square of something (like "x^2" in English notation), please clarify.
Assuming you meant to write "2sin^2(x) - 2cos(x) = 2.5," we can attempt to solve the equation.
Let's simplify the equation first:
2sin^2(x) - 2cos(x) = 2.5
Now, we can use the trigonometric identity: sin^2(x) + cos^2(x) = 1 Rearrange this identity: sin^2(x) = 1 - cos^2(x)
Substitute sin^2(x) with 1 - cos^2(x) in the original equation:
2(1 - cos^2(x)) - 2cos(x) = 2.5
Now, distribute the 2 on the left side:
2 - 2cos^2(x) - 2cos(x) = 2.5
Rearrange the equation:
-2cos^2(x) - 2cos(x) + 2 = 2.5
Subtract 2.5 from both sides:
-2cos^2(x) - 2cos(x) - 0.5 = 0
Now, we have a quadratic equation in terms of cos(x):
2cos^2(x) + 2cos(x) + 0.5 = 0
To solve for cos(x), we can use the quadratic formula:
cos(x) = (-b ± √(b^2 - 4ac)) / 2a
In this equation, a = 2, b = 2, and c = 0.5.
cos(x) = (-(2) ± √(2^2 - 4 * 2 * 0.5)) / (2 * 2) cos(x) = (-2 ± √(4 - 4)) / 4 cos(x) = (-2 ± √0) / 4
Since the discriminant (the term inside the square root) is zero, there is only one real solution for cos(x):
cos(x) = (-2 + 0) / 4 cos(x) = -0.5
Now, to find sin(x), we can use the trigonometric identity:
sin^2(x) + cos^2(x) = 1
sin^2(x) + (-0.5)^2 = 1 sin^2(x) + 0.25 = 1 sin^2(x) = 1 - 0.25 sin^2(x) = 0.75
sin(x) = ±√0.75 ≈ ±0.866
So, the solutions for x are:
- cos(x) = -0.5 and sin(x) ≈ 0.866
- cos(x) = -0.5 and sin(x) ≈ -0.866
Keep in mind that this solution assumes you meant "2sin^2(x) - 2cos(x) = 2.5" as the original equation. If "квадрат" represents something different, please provide clarification.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili