Вопрос задан 19.07.2023 в 00:29. Предмет Математика. Спрашивает Миляева Влада.

Помогите решить уравнение: tgx-sin2x=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ромич Макс.

Ответ:

Пошаговое объяснение:

sinx/cosx - 2sinxcosx = 0

sinx(1/cosx - 2cosx) = 0

1) sinx = 0

x = πk, k ∈ Z

2) 1/cosx - 2cosx = 0

cos²x = 1/2

cosx = ±√2/2

x = π/4 + πn/2, n ∈ Z

0 0
Отвечает Логунова Юлия.

sinx/cosx - 2sinxcosx = 0

sinx(1/cosx - 2cosx) = 0

tgx-sin2x=0; ОДЗ  х≠π/2+πк, к∈Z

sinx/cosx-(2sinx)(cosx)=0

sinx*((1/cosx)  -2cosx) = 0

sinx=0; x = πk, k ∈ Z

(1/cosx)  -2cosx)=0; cos²x = 1/2

cosx = ±√2/2

cosх=√2/2⇒х=±π/4+2πm;  m∈Z

cosх=-√2/2⇒х=±3π/4+2πl ; l∈Z

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить уравнение tg(x) - sin(2x) = 0, мы можем использовать тригонометрические тождества и методы решения уравнений.

  1. Применим тригонометрическое тождество: sin(2x) = 2sin(x)cos(x). Теперь уравнение примет вид: tg(x) - 2sin(x)cos(x) = 0.

  2. Разделим оба члена уравнения на cos(x): (tg(x))/cos(x) - 2sin(x) = 0.

  3. Заменим tg(x)/cos(x) на sin(x)/cos^2(x): (sin(x)/cos^2(x)) - 2sin(x) = 0.

  4. Умножим оба члена уравнения на cos^2(x): sin(x) - 2sin(x)cos^2(x) = 0.

  5. Факторизуем sin(x) в левой части уравнения: sin(x)(1 - 2cos^2(x)) = 0.

Теперь у нас есть два возможных случая:

a) sin(x) = 0: Решение этого случая: x = kπ, где k - целое число.

b) 1 - 2cos^2(x) = 0: Решение этого случая: cos^2(x) = 1/2. Извлекая квадратный корень из обеих сторон, получим: cos(x) = ±sqrt(2)/2. Это дает два значения для x: x = π/4 + kπ/2 и x = 7π/4 + kπ/2, где k - целое число.

Таким образом, решения уравнения tg(x) - sin(2x) = 0 это: x = kπ для любого целого числа k, x = π/4 + kπ/2 для любого целого числа k, x = 7π/4 + kπ/2 для любого целого числа k.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос