Вопрос задан 17.07.2023 в 13:02. Предмет Математика. Спрашивает Головнич Сашка.

Вектор d= 2i+j C= - 1/2 + 3i Найти: вектора: c+d, d-c, c*d..?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жуков Савелий.
D=2i + j
c= - 1/2 + 3i
c + d= - 1/2 + 3i + 2i + j= 5i + j - 1/2
d - c=2i + j + 1/2 - 3i=1/2 + j - i
c • d=( - 1/2 + 3i)(2i + j)= - i - 1/2 • j + 6 • i^2 + 3ij=6i^2 + 3ij - i - 1/2j
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления векторов c+d, d-c и c*d необходимо выполнить операции сложения, вычитания и умножения согласно правилам для комплексных чисел.

Дано: d = 2i + j c = -1/2 + 3i

  1. Вектор c+d: c + d = (-1/2 + 3i) + (2i + j) = -1/2 + 3i + 2i + j = -1/2 + 5i + j

Таким образом, вектор c+d равен -1/2 + 5i + j.

  1. Вектор d-c: d - c = (2i + j) - (-1/2 + 3i) = 2i + j + 1/2 - 3i = 1/2 - i + j

Таким образом, вектор d-c равен 1/2 - i + j.

  1. Вектор c*d: c * d = (-1/2 + 3i) * (2i + j)

Чтобы перемножить два комплексных числа, раскроем скобки и воспользуемся правилами умножения: c * d = -1/2 * 2i - 1/2 * j + 3i * 2i + 3i * j = -i - 1/2j + 6i^2 + 3ij

Здесь i^2 = -1, поэтому: c * d = -i - 1/2j + 6(-1) + 3ij = -i - 1/2j - 6 + 3ij = (-6 - 1) + (3i - 1/2)j = -7 + (3i - 1/2)j

Таким образом, вектор c*d равен -7 + (3i - 1/2)j.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос