
(6x+18)(4-16x)(7x-21)(5-2x)≥0


Ответы на вопрос

Ответ: ..........
Удачи!!!




To solve the inequality , we need to find the intervals for which the expression is non-negative.
First, let's factorize the expression:
We can see that the expression is zero when any of the factors are zero. Therefore, the critical values occur at , , , and .
We'll divide the number line into intervals based on these critical values and test the sign of the expression within each interval.
Interval 1: Let's pick a value in this interval, for example, . Plugging it into the expression:
Since the expression is negative in this interval, it doesn't satisfy the inequality.
Interval 2: Let's pick a value in this interval, for example, . Plugging it into the expression:
Since the expression is negative in this interval, it doesn't satisfy the inequality.
Interval 3: Let's pick a value in this interval, for example, . Plugging it into the expression:
Since the expression is zero in this interval, it satisfies the inequality.
Interval 4: Let's pick a value in this interval, for example, . Plugging it into the expression:
Since the expression is positive in this interval, it satisfies the inequality.
Therefore, the solution to the inequality is:
or


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili