Вопрос задан 13.07.2023 в 17:18. Предмет Математика. Спрашивает Митасов Васёк.

Помогите пожалуйста решить y^2-5y=0 x^2+4x=0 Заранее спасибо

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кудайберди Айдос.

1) y²-5y=0

y(y-5)=0

y=0 или y-5=0

y=0 или y=5

Ответ: 0; 5

2) x²+4x=0

x(x+4)=0

x=0 или x+4=0

x=0 или x=-4

Ответ: 0; -4

0 0
Отвечает Ходырева Елизавета.

Ответ:

1y=0 2y=5; 1x=0 2x=-4

Пошаговое объяснение:

1. y²-5y=0

y×(y-5)=0

y=0 y-5=0

1y=0 2y=5

x²+4x=0

x×(x+4)=0

x=0 x+4=0

1x=0 2x=-4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнений, необходимо найти значения переменных, при которых оба уравнения выполняются. Давайте решим каждое уравнение по отдельности:

  1. Решение уравнения y^2 - 5y = 0: Первым шагом можно вынести общий множитель y из левой части уравнения: y(y - 5) = 0

Теперь у нас есть произведение двух множителей, равное нулю. Значит, один из множителей равен нулю:

  1. y = 0
  2. y - 5 = 0

Решим каждое уравнение:

  1. y = 0
  2. y = 5

Таким образом, у нас есть два возможных значения y: y = 0 и y = 5.

  1. Решение уравнения x^2 + 4x = 0: Также вынесем общий множитель x из левой части уравнения: x(x + 4) = 0

Теперь у нас есть произведение двух множителей, равное нулю. Значит, один из множителей равен нулю:

  1. x = 0
  2. x + 4 = 0

Решим каждое уравнение:

  1. x = 0
  2. x = -4

Таким образом, у нас есть два возможных значения x: x = 0 и x = -4.

Итак, решение системы уравнений - это все возможные комбинации значений x и y из уравнений выше. В данном случае у нас два возможных решения:

  1. x = 0, y = 0
  2. x = -4, y = 5

Пожалуйста, проверьте правильность решения, и если есть еще вопросы, не стесняйтесь задавать!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос