Вопрос задан 12.07.2023 в 03:14. Предмет Математика. Спрашивает Баскакова Элина.

40 баллов!!!!!!!! Радиус вписанной окружности в любой треугольник находится по формуле…

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шталь Андрей.

r =  \frac{S}{p}  =  \frac{2S}{a + b + c}

Где p – полупериметр данного треугольника, S – его площадь.

Доказательство:

Пускай дан произвольный треугольник ∆АВС и вписанная в него окружность. Соединим центр окружности О с вершинами треугольника получим:

 S_{ABC} = S_{AOB} + S_{BOC} + S_{AOC}

Проведём радиусы (r) окружности к сторонам треугольника (a, b, c) (по свойству касательной, радиусы перпендикулярны сторонам). Тогда:

 S_{ABC} = \frac{ar}{2} +  \frac{br}{2} +  \frac{cr}{2} =  \frac{(a+b+c)}{2}r = pr \Rightarrow \\ \Rightarrow r = \frac{S}{p}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти радиус вписанной окружности в любом треугольнике, можно использовать формулу, которая связывает радиус вписанной окружности с площадью треугольника и его полупериметром (половина суммы длин всех сторон).

Пусть s - полупериметр треугольника, а S - его площадь.

Тогда радиус r вписанной окружности можно найти по формуле:

r=Ssr = \frac{S}{s}

Где:

s=a+b+c2s = \frac{a + b + c}{2}

где a, b и c - длины сторон треугольника.

Итак, чтобы найти радиус вписанной окружности, нужно сначала найти полупериметр треугольника (s), затем его площадь (S), и после этого применить формулу, чтобы получить значение радиуса (r).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос