Вопрос задан 11.07.2018 в 19:49. Предмет Математика. Спрашивает Артеменко Ян.

Доказать, что множество точек A= {(x, y): y = ½x½, -, – 1 £ x £ 1} несчетно.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Королёва Алина.

1. Во время сессии 24 студента группы должны сдать три зачета: по физике, математике и программированию. 20 студентов сдали зачет по физике, 10 – по математике, 5 – по программиро-ванию, 7 – по физике и математике, 3 – по физике и программированию, 2 – по математике и про-граммированию. Сколько студентов сдали все три зачета?
2. Упростить: (AÈB) È (AB).
3. Доказать, что множество точек A= {(x, y): y = ½x½, -,– 1 £ x £ 1} несчетно.
4. Нарисовать диаграмму Эйлера-Венна для множества (А \ В) È С.
5. Эквивалентны ли множества A = {y: y = x3, 1< x <2} и B = {y: y = 3x, 3< x < ¥}?

2. Раздел «Отношения. Функции»
Вариант № 7
1. Задано бинарное отношение  = {<1, 1>, <1, 2>, <2, 1>, <2, 4>, <4, 2>}.
Найти D(), R(),  ,  -1. Проверить, будет ли отношение  рефлексивным, симметрич-ным, антисимметричным, транзитивным?
2. Привести пример отношения рефлексивного, симметричного и транзитивного.
3. Дана функция f(x) = x 2 + ,отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

3. Раздел «Графы»
1. Описать граф, заданный матрицей смежности, используя как можно больше характери-стик. Составить матрицу инцидентности и связности (сильной связности).
2. Пользуясь алгоритмом Форда-Беллмана, найти минимальный путь из x1 в x7 в ориентиро-ванном графе, заданном матрицей весов.
3. Пользуясь алгоритмом Краскала, найти минимальное остовное дерево для графа, задан-ного матрицей длин ребер.

Варианты заданий
7.1. 0 0 1 1 0 0 2. ¥ 3 4 9 ¥ ¥ ¥ 3. ¥ 4 3 5 6
1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 4 ¥ 2 ¥ 1
1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 3 2 ¥ 1 1
0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 5 ¥ 1 ¥ 3
0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 6 1 1 3 ¥
0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8
¥ ¥ ¥ ¥ ¥ ¥ ¥

4. Раздел «Булевы функции»

Для данной формулы булевой функции
а) найти ДНФ, КНФ, СДНФ, СКНФ методом равносильных преобразований;
б) найти СДНФ, СКНФ табличным способом (сравнить с СДНФ, СКНФ, полученными в пункте “а”);
в) указать минимальную ДНФ и соответствующую ей переключательную схему.

Варианты заданий

Функция Функция 
7. (y x) ~(x  z)

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос