
Из одинаковых на вид монет мудрец может найти единственную фальшивую, сделав всего 4 взвешивания на
чашечных весах без гирь. Какое наибольшее число монет может быть у Мудреца, если известно, что фальшивая монета более легкая?

Ответы на вопрос

Наибольшее число монет, которое может быть у Мудреца =81 монеты (одна из которых фальшивая)
1 взвешивание: 81:3=27 монет.
3 горсти по 27 монет взвешиваем: если они равны - третья горсть с фальшивой монетой, иначе выбираем ту, которая весит меньше.
2 взвешивание: у нас есть 27 монет среди которых одна фальшивая
27:3=9 монет
Из 3 горстей по 9 монет взвешиваем две: если они равны - третья горсть с фальшивой монетой, иначе выбираем ту, которая весит меньше.
Взвешивание 3: у нас осталось 9 монет среди которых одна фальшивая.
9:3=3
Из трех горстей по 3 монеты взвешиваем две: если они равны - третья горсть с фальшивой монетой, иначе выбираем ту, которая весит меньше.
Взвешивание 4: у нас осталось 3 монеты, среди которых одна фальшивая.
Взвешиваем две монеты, если они равны - третья монета фальшивая, иначе выбираем ту, которая весит меньше.
Ответ: наибольшее число монет=81


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili