Вопрос задан 07.07.2023 в 13:35. Предмет Математика. Спрашивает Соловьев Иван.

Найдите корень уравнения 5/16(х - 5/18) %3D 7/24. Какому из неравенств удовлетворяет полученный

корень? А 0,74 Б 0,36 В 1,21 В 0,29 Помогите пожалуйста, даю много баллов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Криницына Елизавета.

Ответ:

5/16(х - 5/18) = 7/24;

х - 5/18 = 7/24 : 5/16;

х - 5/18 = 7/24 • 16/5;

х - 5/18 = 14/15;

х = 14/15 + 5/18;

х = 109/90 = 1 19/90 = 1,2(1).

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим уравнение и найдем значение корня:

Исходное уравнение:

516(x518)=724\frac{5}{16}(x - \frac{5}{18}) = \frac{7}{24}

Давайте сначала упростим обе стороны уравнения:

516x516518=724\frac{5}{16}x - \frac{5}{16} \cdot \frac{5}{18} = \frac{7}{24}

516x25288=724\frac{5}{16}x - \frac{25}{288} = \frac{7}{24}

Теперь приравняем коэффициенты при xx:

516x=724+25288\frac{5}{16}x = \frac{7}{24} + \frac{25}{288}

516x=1448+25288\frac{5}{16}x = \frac{14}{48} + \frac{25}{288}

516x=196+25288\frac{5}{16}x = \frac{196 + 25}{288}

516x=221288\frac{5}{16}x = \frac{221}{288}

Теперь делим обе стороны на 516\frac{5}{16}:

x=221288165x = \frac{221}{288} \cdot \frac{16}{5}

x=44290x = \frac{442}{90}

x4.9111x \approx 4.9111

Теперь, чтобы определить, какому неравенству удовлетворяет полученный корень, давайте сравним его с вариантами ответов:

А) 0.74 Б) 0.36 В) 1.21 Г) 0.29

Наиболее близким значением к 4.91114.9111 является вариант ответа А) 0.740.74. Таким образом, ответ: А) 0.740.74.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос