Вопрос задан 07.07.2023 в 04:32. Предмет Математика. Спрашивает Бутчик Вася.

Помогите пж 2. На рис 2 прямые АС и АВ касаются окружности с центром О в точках С и В

соответственно. Найдите ∠ВАС, если ∠СОВ = 122°. 3. Треугольник вписан в окружность так, что сторона АВ является диаметром окружности. Дуга АС равна 84°. Найдите углы треугольника АВС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Круглова Александра.

Ответ:

Надеюсь понятно объяснила

вторую задачу уже решала


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этих задач мы можем использовать свойства касательных, вписанных углов и дуг окружности.

Задача 2: По условию, у нас есть следующая информация:

  • Угол ∠СОВ = 122° (этот угол соответствует центральному углу, образованному дугой СВ окружности).
  • Прямые АС и АВ касаются окружности, а это означает, что угол между касательной и радиусом в точке касания равен 90°.

Пусть угол ∠ВАС = α.

Так как угол между радиусом и касательной в точке касания равен 90°, то мы можем сказать, что: ∠ВАО = 90° ∠САО = 90°

Теперь мы знаем, что сумма углов в треугольнике равна 180°, поэтому: α + 90° + 90° = 180° α = 180° - 180° α = 0°

Таким образом, угол ∠ВАС равен 0°.

Задача 3: По условию, у нас есть следующая информация:

  • Сторона АВ является диаметром окружности, что означает, что ∠АВС = 90° (половина от угла в полной окружности).
  • Дуга АС равна 84°, следовательно, дуга ВС также равна 84° (так как дуги, опирающиеся на одну и ту же дугу, равны).

Теперь мы можем использовать свойства вписанных углов. Вписанный угол равен половине соответствующей дуги. Таким образом: ∠ВСА = 84° / 2 = 42° ∠САВ = 84° / 2 = 42°

Известно, что сумма углов в треугольнике равна 180°: ∠ВСА + ∠САВ + ∠АВС = 180° 42° + 42° + 90° = 180°

Таким образом, углы треугольника АВС равны: ∠ВСА = 42° ∠САВ = 42° ∠АВС = 90°

Если у вас есть еще какие-либо вопросы, не стесняйтесь задавать!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос