Вопрос задан 03.07.2023 в 08:58. Предмет Математика. Спрашивает Наумов Кирилл.

Сокращенная формула биномы ньютона

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Михаил.

где {n\choose k}=\frac{n!}{k!(n - k)2!}= C_n^k


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Сокращенная формула бинома Ньютона, также известная как формула биномиального разложения, позволяет раскрыть степень бинома в виде суммы слагаемых. Формула выглядит следующим образом:

(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n, n) * a^0 * b^n

где a и b - числа, n - неотрицательное целое число, C(n, k) - биномиальный коэффициент, равный числу сочетаний из n по k, и может быть вычислен по формуле:

C(n, k) = n! / (k! * (n - k)!)

Здесь "!" обозначает факториал, то есть произведение всех положительных целых чисел от 1 до данного числа.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос