Вопрос задан 02.07.2023 в 09:51. Предмет Математика. Спрашивает Концевая Карина.

(35×+303):9-12=150.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Инютина Алина.

Ответ:

(35x + 303) \div 9 - 12 = 150 \\ (35x + 303) \div 9 = 150 + 12 \\ (35x + 303) \div 9 = 162 \\ 35x + 303 = 162 \times 9 \\ 35x + 303 = 1458 \\ 35x = 1458 - 303 \\ 35x = 1155 \\ x = 1155  \div  35 \\ x = 33

Ответ: 33

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation (35× + 303) / 9 - 12 = 150, we can follow these steps:

Step 1: Distribute the division operation to the terms inside the parentheses. (35× + 303) / 9 - 12 = 150 can be rewritten as: (35× / 9 + 303 / 9) - 12 = 150

Step 2: Simplify the divisions. 35× / 9 can be written as (35/9)×. 303 / 9 simplifies to 33⅔.

The equation now becomes: (35/9)× + 33⅔ - 12 = 150

Step 3: Combine the fractions. To combine the fractions, we need to find a common denominator. The common denominator for 9 and 3 is 9.

The equation becomes: (35/9)× + (33⅔)(9/9) - (12)(9/9) = 150

Simplifying further: (35/9)× + (101/3) - (108/9) = 150

Step 4: Combine like terms. (101/3) - (108/9) can be simplified by finding a common denominator. The common denominator for 3 and 9 is 9.

The equation becomes: (35/9)× + (101/3)(3/3) - (108/9) = 150

Simplifying further: (35/9)× + (303/9) - (108/9) = 150

Step 5: Combine the fractions. (303/9) - (108/9) = 195/9.

The equation becomes: (35/9)× + (195/9) = 150

Step 6: Subtract (195/9) from both sides. (35/9)× + (195/9) - (195/9) = 150 - (195/9)

Simplifying further: (35/9)× = (150/1) - (195/9)

Step 7: Subtract the fractions on the right side. (150/1) - (195/9) can be rewritten with a common denominator of 9.

The equation becomes: (35/9)× = (1350/9) - (195/9)

Simplifying further: (35/9)× = (1350 - 195)/9

Step 8: Perform the subtraction on the right side. (1350 - 195) = 1155.

The equation becomes: (35/9)× = 1155/9

Step 9: Multiply both sides by the reciprocal of (35/9), which is (9/35). ((9/35) × (35/9)×) = (1155/9) × (9/35)

Simplifying further: (1)× = 1155/35

Step 10: Simplify. 1 = 33.

However, we have reached a contradiction. The equation is inconsistent, which means there is no solution that satisfies the equation (35× + 303) / 9 - 12 = 150.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос