
√R²- 4.5² + √R² - 10.5²=64


Ответы на вопрос

√R²-4,5²+√R²-10,5²=64
R-20,25+R-110,25-64=0
2R-194,5=0
2R=194,5
R=97,25
или если условие такое, то решение
√(R²-4,5²)+√(R²-10,5)=64
(R-4,5)+(R-10,5)=64
2R=64+4,5+10,5
2R=79
R=39,5



To solve the equation √(R² - 4.5²) + √(R² - 10.5²) = 64, you can follow these steps:
Start by isolating one of the square roots on one side of the equation.
√(R² - 4.5²) = 64 - √(R² - 10.5²)
Square both sides of the equation to eliminate the square roots.
(R² - 4.5²) = (64 - √(R² - 10.5²))²
Expand the right side of the equation.
R² - 4.5² = 64² - 2 * 64 * √(R² - 10.5²) + (R² - 10.5²)
Now, isolate the term with the square root:
2 * 64 * √(R² - 10.5²) = 64² - R² + 10.5² - R² + 4.5²
Square both sides of this equation to eliminate the square root:
4 * (64²) * (R² - 10.5²) = (64² - R² + 10.5² - R² + 4.5²)²
Simplify both sides:
4 * 64⁴ * (R² - 10.5²) = (64² - R² + 10.5² - R² + 4.5²)²
Divide both sides by 4 * 64⁴:
R² - 10.5² = [(64² - R² + 10.5² - R² + 4.5²)²] / (4 * 64⁴)
Now, simplify the right side:
R² - 110.25 = [(64² - 2R² + 10.5² + 4.5²)²] / (4 * 64⁴)
Continue simplifying:
R² - 110.25 = [(64² - 2R² + 115.5²)²] / (4 * 64⁴)
Expand the square on the right side:
R² - 110.25 = [4096² - 2 * 64² * R² + 2 * 115.5² * 64² - 2 * 115.5² * 64² + 2R² * 115.5² - 4R⁴] / (4 * 64⁴)
Simplify further:
R² - 110.25 = [4096² - 2 * 64² * R² - 2 * 115.5² * 64² + 2R² * 115.5² - 4R⁴] / (4 * 64⁴)
Combine like terms:
R² - 110.25 = [4096² - 2 * 64² * R² - 2 * 115.5² * 64² - 4R⁴] / (4 * 64⁴)
Now, isolate the R² terms on one side:
R² - R² - 110.25 = [4096² - 2 * 64² * R² - 2 * 115.5² * 64² - 4R⁴] / (4 * 64⁴)
Simplify:
-110.25 = [4096² - 2 * 64² * R² - 2 * 115.5² * 64² - 4R⁴] / (4 * 64⁴)
Multiply both sides by 4 * 64⁴ to isolate the right side:
-110.25 * 4 * 64⁴ = 4096² - 2 * 64² * R² - 2 * 115.5² * 64² - 4R⁴
Calculate the left side:
-110.25 * 4 * 64⁴ ≈ -51273728
Rewrite the equation:
-51273728 = 4096² - 2 * 64² * R² - 2 * 115.5² * 64² - 4R⁴
Move everything to one side:
4R⁴ - 2 * 64² * R² - 2 * 115.5² * 64² - 4096² + 51273728 = 0
Now, you have a quartic equation in terms of R. This equation can be challenging to solve analytically. You may need to use numerical methods or a calculator to find its approximate solutions.
Please note that the solutions to this equation might involve complex numbers, as quartic equations can have complex roots. Numerical methods like the Newton-Raphson method or using a graphing calculator/computer software would be useful for finding approximate solutions.


Похожие вопросы

Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili