
2х(X-1 1/10)+4 1/5=5 1/3


Ответы на вопрос

Пошаговое объяснение:
2×(х-1 1/10)+4 1/5=5 1/3
2(х-1 1/10)+4 1/5=5 1/3
2(х-11/10)+21/5=16/3
2х-11/5+21/5=16/3
2х+2=16/3
2х=16/3-2
2х=10/3
Х=5/3=1 2/3



Let's solve the equation step by step:
2x(X - 1 1/10) + 4 1/5 = 5 1/3
First, let's simplify the fractions:
1/10 = 3/30 4 1/5 = 21/5 5 1/3 = 16/3
Now the equation looks like this:
2x(X - 3/30) + 21/5 = 16/3
Next, distribute the 2x on the left side of the equation:
2x * X - 2x * (3/30) + 21/5 = 16/3
Now, simplify the fractions in the equation:
2x^2 - (2x * 3/30) + 21/5 = 16/3
Simplify the fraction in the parentheses:
2x^2 - (x/5) + 21/5 = 16/3
To get rid of the fractions, multiply both sides of the equation by 15 (the least common multiple of 5 and 3) to clear the denominators:
15 * (2x^2 - (x/5) + 21/5) = 15 * (16/3)
Now, simplify the equation:
15 * 2x^2 - 15 * (x/5) + 15 * (21/5) = 16 * 5
30x^2 - 3x + 63 = 80
Now, subtract 80 from both sides of the equation:
30x^2 - 3x + 63 - 80 = 0
30x^2 - 3x - 17 = 0
Now, you have a quadratic equation. To solve for x, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 30, b = -3, and c = -17. Plug these values into the formula:
x = (-(-3) ± √((-3)² - 4 * 30 * (-17))) / (2 * 30)
x = (3 ± √(9 + 2040)) / 60
x = (3 ± √2049) / 60
Now, calculate the square root of 2049:
√2049 ≈ 45.25
So the solutions for x are:
x₁ = (3 + 45.25) / 60 ≈ 48.25 / 60 ≈ 0.8042 x₂ = (3 - 45.25) / 60 ≈ -42.25 / 60 ≈ -0.7042
So, the solutions to the equation are approximately:
x₁ ≈ 0.8042 x₂ ≈ -0.7042


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili