Вопрос задан 28.06.2023 в 16:09. Предмет Математика. Спрашивает Шугуров Кирилл.

Треугольник АРК равнобедренный с основанием АК найдите углы АРН и КНР если РН -медиана < АРК = 86

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галамага Юля.

Ответ:

угол APH = 4; KHP = 90

Пошаговое объяснение:

В равнобедренном треугольники медиана, проведенная к основанию одновременно является медианой, биссектрисой и высотой. Соответственно, если РН - высота, то угол КНР - 90, если РН - биссектриса, то угол АРН - 43 (половина от угла АРК)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам нужно использовать свойства равнобедренных треугольников и свойства медианы. Поскольку треугольник АРК равнобедренный с основанием АК, мы знаем, что угол АКР равен углу АКП, то есть они оба равны 86 градусов.

Также, по свойствам медианы в треугольнике, медиана делит угол на два равных угла. Таким образом, угол АРН равен углу КНР. Пусть оба эти угла равны x градусов.

Теперь мы можем записать уравнение для суммы углов в треугольнике АРН:

86 (из угла АКР) + x (угол АРН) + x (угол КНР) = 180 (сумма углов в треугольнике)

Сгруппируем похожие элементы:

2x + 86 = 180

Теперь выразим x:

2x = 180 - 86 2x = 94

x = 94 / 2 x = 47

Таким образом, угол АРН и угол КНР равны 47 градусов каждый.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос