
Expalin lcm of 70,90,40


Ответы на вопрос

Ответ:
2520
//////////////////////////////////////////////////////////////////////////////////////



The Least Common Multiple (LCM) of a set of numbers is the smallest multiple that is evenly divisible by all of the numbers in that set.
To find the LCM of 70, 90, and 40, you can follow these steps:
Step 1: Find the prime factorization of each number.
Prime factorization of 70: 70 = 2 * 5 * 7
Prime factorization of 90: 90 = 2 * 3 * 3 * 5
Prime factorization of 40: 40 = 2 * 2 * 2 * 5
Step 2: Take the highest power of each prime factor that appears in the factorization of any of the numbers. In other words, for each prime factor, select the maximum exponent it has across all three numbers.
The prime factor 2 has the highest exponent of 3 in the factorization of 90.
The prime factor 3 has the highest exponent of 2 in the factorization of 90.
The prime factor 5 has the highest exponent of 1 in the factorization of 70.
The prime factor 7 only appears in the factorization of 70.
Step 3: Multiply these highest powers of the prime factors together:
LCM = 2^3 * 3^2 * 5^1 * 7^1
Step 4: Calculate the product:
LCM = 8 * 9 * 5 * 7
LCM = 5040
So, the LCM of 70, 90, and 40 is 5040.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili