
Вопрос задан 27.06.2023 в 09:59.
Предмет Математика.
Спрашивает Попова Дарья.
Укажіть похідну функції f(x)=4x³+tgx


Ответы на вопрос

Отвечает Ибрагимов Даниил.
Ответ:
Пошаговое объяснение:
Производные элементарных функций :
Производная суммы равна сумме производных:
Теперь найдем производную для функции f(x)=4x³+tgx
#SPJ5



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Щоб знайти похідну функції f(x) = 4x³ + tg(x), використовуйте правило диференціювання суми функцій:
d/dx[f(x) + g(x)] = f'(x) + g'(x),
де f'(x) - похідна функції f(x), а g'(x) - похідна функції g(x).
У нашому випадку:
f(x) = 4x³, g(x) = tg(x).
Знайдемо похідні кожної з цих функцій окремо:
- Похідна функції f(x) = 4x³:
f'(x) = d/dx[4x³] = 12x².
- Похідна функції g(x) = tg(x) (тангенс):
g'(x) = d/dx[tg(x)] = sec²(x).
Отже, похідна функції f(x) = 4x³ + tg(x) буде дорівнювати сумі похідних цих функцій:
f'(x) = 12x² + sec²(x).
Це є похідною даної функції.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili