
1)|х+3|<4; 2)|х-1|≤2; 3)|5+х|<8


Ответы на вопрос

Ответ:
1) -4<x+3<4
-4-3<x<4-3
-7<x<1
2)-2<x-1<2
-2+1<x<2+1
-1<x<3
3) -8<5+x<8
-7-5<x<8-5
-12<x<-3



Let's solve each of these absolute value inequalities step by step:
- |x + 3| < 4:
To solve this inequality, we can consider two cases:
Case 1: (x + 3) < 4 Solve for x: x + 3 < 4 x < 4 - 3 x < 1
Case 2: -(x + 3) < 4 Solve for x: -(x + 3) < 4 Multiply both sides by -1 (and reverse the inequality sign): x + 3 > -4 x > -4 - 3 x > -7
So, for case 1, we have x < 1, and for case 2, we have x > -7. The solution for the absolute value inequality is -7 < x < 1.
- |x - 1| ≤ 2:
To solve this inequality, we can again consider two cases:
Case 1: (x - 1) ≤ 2 Solve for x: x - 1 ≤ 2 x ≤ 2 + 1 x ≤ 3
Case 2: -(x - 1) ≤ 2 Solve for x: -(x - 1) ≤ 2 Multiply both sides by -1 (and reverse the inequality sign): x - 1 ≥ -2 x ≥ -2 + 1 x ≥ -1
So, for case 1, we have x ≤ 3, and for case 2, we have x ≥ -1. The solution for the absolute value inequality is -1 ≤ x ≤ 3.
- |5 + x| < 8:
To solve this inequality, we can again consider two cases:
Case 1: (5 + x) < 8 Solve for x: 5 + x < 8 x < 8 - 5 x < 3
Case 2: -(5 + x) < 8 Solve for x: -(5 + x) < 8 Multiply both sides by -1 (and reverse the inequality sign): 5 + x > -8 x > -8 - 5 x > -13
So, for case 1, we have x < 3, and for case 2, we have x > -13. The solution for the absolute value inequality is -13 < x < 3.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili