Вопрос задан 26.06.2023 в 00:16. Предмет Математика. Спрашивает Федоткина Валентина.

Y= ((x-1)(x+3))^2 Все расписать надо

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мусин Артур.

Відповідь: у=((х-1)(х+3))^2=((х2+3х-1х-3))^2=(х2+2х-3)^2

у=(х2+2х-3)^2=(х2+2х-3)(х2+2х-3)=х4+2х3-3х2+2х3+4х2-6х-3х2-6х+9=х4+4х3-2х2-12х+9

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь вам разложить выражение Y=((x-1)(x+3))^2 на множители. Для этого давайте вначале выполним умножение внутри скобок:

Y = ((x-1)(x+3))^2 Y = (x^2 + 3x - x - 3)^2

Теперь объединим подобные слагаемые внутри скобок:

Y = (x^2 + 2x - 3)^2

Далее, чтобы разложить это выражение на множители, мы можем воспользоваться формулой квадрата суммы:

(a + b)^2 = a^2 + 2ab + b^2

В данном случае, a = x^2 и b = 2x - 3. Применим эту формулу:

Y = (x^2 + 2ab + b^2) Y = x^4 + 2x^2(2x - 3) + (2x - 3)^2

Теперь выразим квадрат (2x - 3)^2:

(2x - 3)^2 = 4x^2 - 12x + 9

Теперь подставим это значение обратно в выражение для Y:

Y = x^4 + 2x^2(2x - 3) + (4x^2 - 12x + 9)

Произведем умножение:

Y = x^4 + 4x^3 - 6x^2 + 4x^2 - 12x + 9

Теперь объединим подобные слагаемые:

Y = x^4 + 4x^3 - 2x^2 - 12x + 9

Итак, выражение Y=((x-1)(x+3))^2 раскладывается на множители следующим образом:

Y = x^4 + 4x^3 - 2x^2 - 12x + 9

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос