
Фабрика выпускает два типа красок (для внутренних и наружных работ) объёмами а и b тонн в сутки
соответственно. Эти объёмы выпуска могут принимать любые значения. Какую наибольшую прибыль может получить фабрика за сутки, если зависимость прибыли от объёмов выпуска продукции задаётся формулой 2 2 S a b a b a b , 5 9 4,1 ?

Ответы на вопрос

Ответ:
22,4
Пошаговое объяснение:
Тоже готовишься к пред. профу?) Тоже долго сидел на этой задаче. Короче:
П = 9b + 5a - a² - b² - 4,1
Сделаем группировку
П = -(a² - 5a) - (b²-9b) - 4,1
Можно заметить, что это почти формула сокращенного умножения. Добавим число до полноценной формулы и сразу вычтем его.
П = -(a² - 5a + 6,25 - 6,25) - (b² - 9b + 20,25 - 20,25) - 4,1
П = -((a - 2,5)² - 6,25) - ((b - 4,5)² - 20,25) - 4,1
П = -(a - 2,5)² + 6,25 - (b - 4,5)² + 20,25 - 4,1
П = 22,4 - (a - 2,5)² - (b - 4,5)²
(a - 2,5)² ≥ 0 ⇒ a = 2,5
(b - 4,5)² ≥ 0 ⇒ b = 4,5
Пmax = 22,4
Ответ: 22,4
P.S Надеюсь, нормально объяснил



Для максимизации прибыли фабрики за сутки, вам необходимо определить значения a и b, которые максимизируют функцию прибыли P(a, b), заданную формулой:
P(a, b) = 5a^2 + 9b^2 - 4.1ab - 5a - 9b
Для нахождения максимального значения этой функции, вам нужно взять частные производные по a и b и приравнять их к нулю:
∂P/∂a = 10a - 4.1b - 5 = 0 ∂P/∂b = 18b - 4.1a - 9 = 0
Решим эту систему уравнений. Давайте начнем с первого уравнения:
10a - 4.1b - 5 = 0 10a = 4.1b + 5 a = (4.1b + 5)/10
Теперь подставим это значение a во второе уравнение:
18b - 4.1a - 9 = 0 18b - 4.1((4.1b + 5)/10) - 9 = 0
Умножим оба выражения на 10, чтобы избавиться от дробей:
180b - 41b - 50 - 90 = 0
Сократим слагаемые:
139b - 140 = 0 139b = 140 b = 140/139
Теперь, найдя значение b, можно найти значение a, используя первое уравнение:
a = (4.1b + 5)/10 a = (4.1 * (140/139) + 5)/10
Теперь, когда у вас есть значения a и b, подставьте их в формулу для прибыли P(a, b) и найдите максимальную прибыль:
P(a, b) = 5a^2 + 9b^2 - 4.1ab - 5a - 9b P(4.1 * (140/139) + 5)/10, 140/139) = 5 * ((4.1 * (140/139) + 5)/10)^2 + 9 * (140/139)^2 - 4.1 * ((4.1 * (140/139) + 5)/10) * (140/139) - 5 * ((4.1 * (140/139) + 5)/10) - 9 * (140/139)
Рассчитайте это выражение, и вы получите максимальную прибыль, которую фабрика может получить за сутки.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili