Вопрос задан 23.06.2023 в 06:49. Предмет Математика. Спрашивает Азаренко Ирина.

Ю 12) На стоянке стоят автомобили и мотоциклы. Всего на стоянке вместе 45 автомобилей и

мотоциклов, а количество колес равно 115. Если 7 мотоциклов имеют по 3 колеса, а остальные по 2, то найдите сколько было на стоянке автомобилей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курченко Настя.

Ответ:

60

Пошаговое объяснение:

115-45=70

70:7=10

10*3=30

30*2=60

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть x - количество автомобилей на стоянке, и y - количество мотоциклов на стоянке.

Мы знаем, что всего на стоянке 45 транспортных средств, поэтому:

x + y = 45 ...(1)

Также нам известно, что общее количество колес равно 115. Автомобиль имеет 4 колеса, а мотоцикл - либо 2, либо 3 колеса. Мы знаем, что 7 мотоциклов имеют по 3 колеса, а остальные по 2. Таким образом, общее количество колес можно выразить как:

4x + 7 * 3 + (y - 7) * 2 = 115

Упростим это уравнение:

4x + 21 + 2(y - 7) = 115

4x + 2y - 14 = 115

Теперь выразим x + y из уравнения (1):

x + y = 45

y = 45 - x

Подставим это выражение в уравнение для колес:

4x + 2(45 - x) - 14 = 115

Упростим:

4x + 90 - 2x - 14 = 115

Теперь объединим похожие члены:

2x + 76 = 115

Выразим x:

2x = 115 - 76

2x = 39

x = 39 / 2

x = 19.5

Так как количество автомобилей должно быть целым числом, это означает, что на стоянке было 19 автомобилей.

Итак, на стоянке было 19 автомобилей.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос