
Биссектриса треугольника делит его сторону на отрезки длиной 8 и 12. Найдите стороны треугольника,
если сумма двух других сторон равна 30.

Ответы на вопрос

Ответ:
Стороны треугольника равны 12 ед, 18 ед, 20 ед.
Пошаговое объяснение:
Биссектриса треугольника делит его сторону на отрезки длиной 8 и 12. Надо найти стороны треугольника, если сумма двух других сторон равна 30.
Свойство биссектрисы треугольника:
- Биссектриса угла треугольника делит противолежащую сторону в отношении длин прилежащих сторон.
РЕШЕНИЕ
Пусть дан ΔАВС. АК - биссектриса. Точка К делит сторону ВС на два отрезка: ВК = 8, КС = 12. Известно, что АВ+АС = 30. Пусть АВ = х, тогда АС=30-х.
Тогда по свойству биссектрисы угла треугольника:
12x = 8(30-x) , обе части уравнения разделим на 4:
3х = 2(30-х)
3х=60-2х
5х=60
х=12
Таким образом АВ = 12 ед, значит АС = 30-х = 30-12 = 18 ед,
ВС = ВК+КС = 8+12 = 20 ед.
#SPJ3




Для решения этой задачи, давайте обозначим стороны треугольника как a, b и c, где сторона a делится биссектрисой на отрезки длиной 8 и 12. Теперь у нас есть следующие данные:
a = 8 b = 12 a + b + c = 30
Мы знаем, что биссектриса делит сторону a на два отрезка в отношении, пропорциональном длинам других двух сторон б и c. Поэтому мы можем записать:
a/b = c/a
Теперь мы можем решить это уравнение относительно c:
c = (a^2) / b c = (8^2) / 12 c = 64 / 12 c = 16/3
Теперь у нас есть значения всех трех сторон треугольника:
a = 8 b = 12 c = 16/3
Итак, стороны треугольника равны 8, 12 и 16/3 (или приближенно 5.33).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili