Вопрос задан 21.06.2023 в 01:47. Предмет Математика. Спрашивает Корнилова Оксана.

1)x²-3x=0;2)5x+x²=0;помогите пожалуйста ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макеева Вероника.

1) x^2-3x=0;

x(x-3)=0; x1=0, x2=3.

2)5x+x^2=0;

x(5+x)=0; x=0, x=-5.

0 0
Отвечает Шевелёва Алёна.

Ответ:

1) {x}^{2}  - 3x = 0 =  \times  \times (x - 3) = 0 \\ x = 0 \\  \times  - 3 =0 \\  \\ x \ \\   = 0 \\ x = 3

второе:

5х+х²=0

х²+5х=0

(х+0)(х+5)=0

х+0=0

х+5=0

х=0

х=-5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим каждое уравнение по отдельности:

1) x² - 3x = 0

Для решения этого уравнения, сначала факторизируем его:

x(x - 3) = 0

Теперь видно, что уравнение имеет два множителя: x и (x - 3). Для того чтобы уравнение было равным нулю, хотя бы один из этих множителей должен быть равен нулю.

1. x = 0 2. x - 3 = 0

Решим оба уравнения:

1. x = 0 2. x = 3

Таким образом, у нас есть два решения для уравнения x² - 3x = 0: x = 0 и x = 3.

2) 5x + x² = 0

Это уравнение можно преобразовать, добавив x² к обеим сторонам:

x² + 5x = 0

Теперь попробуем факторизировать его:

x(x + 5) = 0

Теперь, чтобы уравнение было равным нулю, один из множителей должен быть равен нулю.

1. x = 0 2. x + 5 = 0

Решим оба уравнения:

1. x = 0 2. x = -5

Итак, у нас есть два решения для уравнения 5x + x² = 0: x = 0 и x = -5.

Таким образом, решения для данных уравнений:

1) x² - 3x = 0 имеют два решения: x = 0 и x = 3.

2) 5x + x² = 0 также имеют два решения: x = 0 и x = -5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос